
Computing in relatively free bands
An acyclic transducer based approach

Reinis Cirpons

School of Mathematics and Statistics
University of St Andrews

Declaration
I certify that this project report has been written by me, is a record of work carried out by me, and is
essentially different from work undertaken for any other purpose or assessment.

Reinis Cirpons

To no one in particular, I just like dedication pages.

Computing in free bands
An acyclic transducer based approach

Reinis Cirpons

Abstract

We investigate computational aspects of free bands. These are the free objects in the
variety defined by the identical relation [x2 = x].

Inspired by the solution to the word problem for the free band presented by Radoszewski
and Rytter in [12], we derive a framework for uniquely representing elements of the free
band using a certain restricted class of transducers. We apply automata minimization
techniques and show that the resulting transducers have size proportional to the smallest
possible word representative of the element in the free band.

We then derive a new algorithm for solving the word problem in the free band matching
the O(|A| · |w|) time complexity of [12], where |A| is the size of the alphabet and |w| is
the total length of the words to be compared. This is somewhat surprising, given that the
obvious method for doing so is exponential in |A|. Our algorithm has practical implications
for computing in bands as well as being of theoretical interest.

Finally we show how the algorithm of Radoszewski and Rytter fits into our framework.

Our framework is original and shows potential for use in computational problems relating
to the free band and bands in general.

CONTENTS CONTENTS

Contents

Title page i

Abstract iv

Contents 1

Introduction 2

1 Preliminaries 3
1.1 Semigroups . 3

1.1.1 Elementary semigroup theory . 4
1.1.2 Varieties of semigroups . 8

1.2 Computation . 11
1.2.1 A quick overview of the theory of computation 11
1.2.2 The word problem in semigroups . 13
1.2.3 Computational complexity . 14
1.2.4 Normal forms and complete invariants . 16

1.3 Automata and transducers . 18
1.3.1 Automata basics . 18
1.3.2 Acyclic automata . 21
1.3.3 Transducers . 23

2 Free band elements via minimal transducers 25
2.1 The word problem in the free band . 25
2.2 From words to trees to transducers and back . 28
2.3 Minimal transducers are small . 31
2.4 How to build a minimal transducer . 35

2.4.1 The vertical method . 36
2.4.2 The horizontal method of [12] . 36

Conclusions and further work 38

Bibliography 39

1

INTRODUCTION

Introduction

Efficient datastructures for representing and manipulating objects are fundamental to the design of
algorithms.

When computing with semigroups words are often used to give a combinatorial description of elements.
However, the word representation is often computationally lacking in many respects, especially in terms
of equality checking.

In this project we set out to explore the computational aspects of a particular semigroup known as the
free band. Inspired by various solutions to the word problem in the free band, we propose a method
of representing elements of the free band with minimal acyclic transducers and use it to derive a novel
algorithm for the word problem in the free band, whose time complexity matches that of the current
best known algorithm.

The project is written to be accessible to a final year undergraduate student with an interest in algebra
and computation, however we believe that there are interesting insights even for the expert reader, and
we also provide an extensive treatment of preliminary material and external resources for anyone that
is not well acquainted with the background material. Our intended audience are graduate students
specializing in abstract algebra and computation.

Chapter 1 of the project is dedicated to the preliminaries. While a lot of it is standard material, and
those familiar with semigroup and computational theory may choose to skip parts of it, we strongly
encourage readers to read through Sections 1.1.2, 1.2.4 and 1.3 fully, as they contain non-standard
material or provide important context for the rest of the paper.

Chapter 2 is dedicated to showcasing our acyclic transducer representation. At first we review the
basic theory of the word problem in the free band, including an important theorem by Green and
Rees. We then show how acyclic transducers arise at as representatives of elements in the free band.
Afterwards we investigate the size properties of minimal transducers. Afterwards we give a linear
method for constructing minimal automata representing a given free band element, and then show
how it can be used to solve the word problem. This leads to us deriving an algorithm for solving the
word problem in the free band with time complexity O(|A| · |w|), where |A| is the size of the alphabet
and |w| is the total length of the words to be compared. This matches of the best know algorithm for
doing so by Radoszewski and Rytter. Finally, we show how the algorithm of Radoszewski and Rytter
fits in our framework.

2

CHAPTER 1

Chapter 1

Preliminaries

The purpose of this chapter is to bring us up to speed on the material that is necessary for under-
standing the word problem in the free band — the central object of study of this paper, as well as our
proposed method for solving it. Furthermore, the ideas laid out should show our motivation for the
second half of the project.

Our main inspiration for this chapter comes from the wonderful courses that the author undertook
while at the University of St Andrews. Namely, Section 1.1 on semigroups is inspired by the course
“MT5863 Semigroups”, Section 1.2 on computation is inspired by “MT3852 Automata and Complexity
theory”, with Subsection 1.2.4 on normal forms and complete invariants discussing a subject that the
author was first introduced to in “MT5864 Topics in Groups”. Even though these courses serve as our
main inspiration, the layout of the content as well as the emphasis is our own, with elements mixed
in from other primary sources.

Section 1.3 consists mainly of a literature review in the domain of automata minimization and some
original definitions of a class of transducers relevant to our goals.

Since this is meant only as a brief overview, theorems are mainly used to either motivate or make
concrete the abstract ideas that we are presenting. Therefore we omit proofs of certain theorems in this
chapter, usually because the proof is either too long or not all too relevant to the methods presented
in the second chapter. Where possible we try and give a reference to the theorem or definition, so
that the curious reader may explore the solution for themselves.

1.1 Semigroups
The following is a very brief overview of the theory of semigroups, with particular focus on the areas
most relevant. For a more comprehensive introduction to the theory of semigroups see, for example, [4]
or [8].

Before diving into semigroups, we will benefit from a refresher on binary relations.

Definition 1.1.1 (Binary relation, special binary relations). A binary relation between sets X
and Y is a subset R ⊆ X × Y . If (x, y) ∈ R then we write x ∼R y. We call X the domain and Y
the codomain of a relation. One can also compose binary relations with compatible domains and
codomains — if R ⊂ X × Y and S ⊂ Y × Z are relations, then their composition is a relation
denoted RS ⊂ X × Z and it is given by RS = {(x, z) : ∃ y ∈ Y, s.t. (x, y) ∈ R, (y, z) ∈ S}.

Example 1.1.2 (Special types of relations).

(a) A graph is a relation R ⊆ X×X. We call elements x ∈ X vertices and the pair (x, y) ∈ R is
called an edge from x to y. We can visualize graphs as networks of interconnected nodes by

3

1.1. SEMIGROUPS CHAPTER 1

drawing a node for each vertex and connecting nodes with arrows according to the edges.

For example, the graph G = {(1, 1), (1, 2), (2, 3), (3, 2)} ⊆ {1, 2, 3}2 can be visualized as

1 2 3

(b) An equivalence relation is a relation R ⊆ X ×X such that for all x, y, z ∈ X the following
hold:

• Reflexivity: x ∼R x,

• Symmetry: if x ∼R y then y ∼R x,

• Transitivity: if x ∼R y and y ∼R z, then x ∼R z.

Equivalence relations can be thought of as relating elements of X that share a common
property. For a given element x ∈ X, its equivalence class is defined to be the set of all
elements related to x, formally we write

x/R = {y ∈ X : x ∼R y}

We write X/R = {x/R : x ∈ X} for the set of all equivalence classes. One can show that
the set of equivalence classes partition X.

(c) A function f : X → Y defines the relation Rf ⊆ X × Y such that x ∼Rf
y ⇔ f(x) = y.

Going the other direction, one can show that any relation that associates to each x ∈ X a
unique y ∈ Y defines a function. Furthermore, for functions f : X → Y and g : Y → Z, the
function composition gf has associated relation Rgf = RfRg, so, in some sense, composition
of function relations is exactly the composition of functions.

(d) A partial function f : X → Y is a function that is allowed to be undefined on some inputs,
in such cases we write f(x) = ⊥. It can be thought of as a relation Rf ⊆ X × Y that
associates to each x ∈ X at most one y ∈ Y . Partial functions inherit composition from
binary relations, that is, if f : X → Y, g : Y → Z are partial functions, then gf : X → Z is
a partial function given by

gf(x) =

{
⊥ if f(x) = ⊥
g(f(x)) otherwise

1.1.1 Elementary semigroup theory
This section is essentially a compressed version of the exposition found in [4, Chapters 1, 2]. We will
first establish semigroups as certain algebraic objects and then work our way to making them more
combinatorial by describing their elements using words and relations.

Definition 1.1.3 (Semigroup, monoid). A semigroup is a pair (S, ·) consisting of a set S and a
binary operation · : S × S → S such that

∀x, y, z ∈ S, x · (y · z) = (x · y) · z

This property of · is also known as associativity.

If S in addition has an element e ∈ S such that ∀x ∈ S, x · e = x = e ·x, then we call e an identity
element and (S, ·) a monoid.

When the binary operation is unambiguous and clear from context, we sometimes simply refer to the
set S as the semigroup.

4

CHAPTER 1 1.1. SEMIGROUPS

Example 1.1.4 (Basic examples of semigroups).

(a) Since addition is associative, then the natural numbers N = {1, 2, . . .} together with addition
form a semigroup.

(b) Similarly, the integers, rational, reals or imaginary number together with addition also form
a monoid, with 0 as the identity element.

(c) The complex numbers together with multiplication form a monoid.

(d) For a given n, the set of all real n × n matrices together with matrix multiplication is a
semigroup.

(e) Semigroups can sometimes be given via so called multiplication tables. In the following table,
the entry in the row labeled by x and column labeled by y corresponds to the product x · y:

· a b c

a a b a
b a b b
c a b c

One can check that the operation is indeed associative and therefore S = {a, b, c} together
with · form a semigroup. Furthermore, c is an identity and so this semigroup is actually a
monoid. It is known as the flip-flop monoid.

(f) For any set X, consider the set TX of all functions X → X. Then TX together with function
composition is a semigroup. This is known as the full transformation monoid on X.

(g) The set PX of all partial functions f : X → X together with partial function composition
is a semigroup, known as the partial transformation monoid.

(h) For any set X, the powerset P(X) = {Y : ∀Y ⊆ X} together with the union operation is a
monoid.

(i) For a set A, called an alphabet, we can define a word over A to be any finite sequence
of elements of A. So, for example if A = {a, b, c}, then (a, b), (a, c, b, c, a) and () are all
valid words over A, where () is called the empty word. For simplicity we usually omit the
parentheses and commas when writing words, so that (a, c, b, c, a) becomes acbca, and the
empty word is written as ε by convention. Given words u = u1u2 . . . uk and v = v1v2 . . . vl,
define their concatenation to be the word uv = u1 . . . ukv1 . . . vl. One can easily check that
concatenation is associative, and that the empty word is the identity for this operation.

Then A+, the set of all non-empty words over A, together with concatenation is a semigroup,
called the free semigroup. And similarly the set A∗ of all words (including the empty word)
is a monoid, called the free monoid.

Note that A does not necessarily have to be finite.

As this example shows, semigroups crop up all over the place in mathematics, and the sets and binary
operation they use are often quite different. For example, performing a matrix multiplication is very
different to composing two functions or concatenating two words or taking the union of two sets.

Our goal in this project is to derive various methods for computing with semigroups and elements
within them. It is therefore useful to come to some sort of standardized description of elements and
multiplication, since then we can more accurately reason about, for example, what properties of the
elements and multiplication we can use in our methods, and we can better compare our methods to
other methods that use the same input description.

Why such a standardized description should exist is not immediately clear, however it turn out that
it does and in fact there exist multiple different descriptions that we could adopt. For example, it is
possible to represent any semigroup as a collection of functions together with composition [4, Theorem

5

1.1. SEMIGROUPS CHAPTER 1

1.22]. Or, if the semigroup is finite, then we can always come up with a multiplication table for it like
in Example 1.1.4(e), so the elements just become formal symbols and the operation consists of looking
up a symbol in a table. While these descriptions can be useful, we are more interested in words than
in functions.

And as it turns out, any semigroup can be thought of as a set of words that can be multiplied by
concatenation with some additional constraints.

To make concrete what these additional constraints are, we first introduce the idea of subsemigroups
and generation:

Definition 1.1.5 (Subsemigroups, generation). A subsemigroup of a semigroup (S, ·) is a subset
T ⊆ S that forms a semigroup under the same operation, i.e. a subset such that (T, ·) is also a
semigroup, where we restrict · to the domain T × T . We sometimes write T ≤ S to mean that T
is a subsemigroup of S.

Given any subset U ⊆ S the smallest subsemigroup T ≤ S that contains U is called the subsemi-
group generated by U . Dually, we call U the generating set of T . One can show that such a T
always exists and is unique.

It is not hard to see that every semigroup is its own generating set, but often we can find much smaller
generating sets, for example we can show that the full transformation monoid TX with |X| ≥ 3 finite
is always generated by only 3 elements [4, Exercise 1.11].

Furthermore, if U is a generating set of S, then every element s ∈ S can be expressed as s = u1u2 · · ·un
with u1, u2, . . . un,∈ U and n ∈ N (if this were not the case, then U would generate strictly smaller
subsemigroup of S).

So, if we fix a generating set, we can express every element of S as a word in the generators of
the generating set U , for example we could associate the word u1u2 . . . un ∈ U+ with s ∈ S above.
However, this expression of an element as a word in generators may not be unique. One can also
show that if x, y ∈ S, then xy has a word in the generators equal to the concatenation of a word in
generators representing x and a word representing y.

This is all very similar to how the free semigroup U+ works, however unlike in U+, in S we can have
multiple different sequences of generators representing the same element. To better express this, we
need more theory still.

Definition 1.1.6 (Homomorphism, image, kernel). A homomorphism between semigroups (S, ·),
(T, ⋆) is a function f : S → T such that ∀x, y ∈ S, f(x · y) = f(x) ⋆ f(y).

An isomorphism is a bijective homomorphism. We write S ∼= T to mean that S and T are
isomorphic.

The image of a homomorphism is the set im(f) = {f(x) : ∀x ∈ S}, one can show that it is a
subsemigroup of T .

The kernel of a homomorphism is the relation ker(f) = {(x, y) ∈ S × S : f(x) = f(y)}. One can
show that it is an equivalence relation on S.

Homomorphisms can be thought of as mapping some part of the structure of one semigroup into
another. In this sense, we think of im(f) as a partial representation of S inside of T , with ker(f)
somehow capturing the information about S that was lost or in some sense “forgotten” in the process
of embedding S into T .

An isomorphism is then a mapping which preserves all information about S, and furthermore, identifies
S fully with T . One can show that S and T have the same semigroup properties, and therefore it
is convenient to think that S and T are the same up to a relabeling of elements, in the context of

6

CHAPTER 1 1.1. SEMIGROUPS

semigroups. As we will see in this project, however, using different labelings of elements can be very
useful in computation and provide much faster algorithms, so the distinction can still be useful if our
context is broader than just that of semigroups.

We now formalize this idea of “forgetting” certain information about a semigroup by introducing
congruences and quotients.

Definition 1.1.7 (Congruence, quotient). A congruence on a semigroup S is an equivalence
relation ρ ⊆ S×S for which the following hold: ∀ z ∈ S and ∀ (x, y) ∈ ρ, we also have (x·z, y ·z) ∈ ρ
and (z · x, z · y) ∈ ρ.

For any relation ρ ⊆ S×S there exists a least congruence containing ρ. We call this the congruence
generated by ρ and denote it ρ♯.

The quotient of S by a congruence ρ is the semigroup on the set of equivalence classes of ρ,
(S/ρ, ⋆), where multiplication is given by x/ρ ⋆ y/ρ = (x · y)/ρ. One can show that this is indeed
a valid semigroup. Furthermore, the function f : S → S/ρ given by f(x) = x/ρ can be shown to
be a homomorphism.

Roughly speaking, an equivalence relation captures within an equivalence class all elements that satisfy
a certain property. A congruence is an equivalence relation that is compatible with the semigroup
structure, therefore its equivalence classes contain all elements that satisfy some semigroup property.
In such a manner, when we quotient, we look at how the equivalence classes interact among themselves,
forgetting about the differences of elements in the same equivalence class.

If this seems similar to what we said about kernels then it is, because as it turns out, kernels and
quotients are equivalent:

Theorem 1.1.8 (Kernels and conguences are equivalent). Given semigroups S, T , and any homo-
morphism f : S → T , ker(f) is a congruence on S. And likewise, for every congurence ρ ⊆ S ×S,
there exists a semigroup T and homomorphism f : S → T such that ker(f) = ρ.

Therefore congruences are actually equivalent to kernels.

Proof. Let f : S → T be a homomorphism. We already know that ker(f) is an equivalence relation
on S. To see that it is a congruence, note that if (x, y) ∈ ker(f) and z ∈ S, then f(x) = f(y) and
so f(xz) = f(x)f(z) = f(y)f(z) = f(yz), therefore (xz, yz) ∈ ker(f). Similarly one establishes that
(zx, zy) ∈ ker(f) too. So ker(f) is a congruence.

Now let ρ ⊆ S × S be a congruence. Then let T = S/ρ, and let f : S → T be the homomorphism
f(x) = x/ρ. Now note that x/ρ = y/ρ ⇔ x ∼ρ y, so f(x) = f(y) ⇔ (x, y) ∈ ρ, therefore ker(f) = ρ
as required. △

We now formalize the idea that the image of a homomorphism is a representation of S inside of T
with ker(f) capturing the information that was lost about S in the process.

Theorem 1.1.9 (First isomorphism theorem). Let S, T be semigroups and f : S → T a homo-
morphism. Then

S/ ker(f) ∼= im(f)

Now to bring it all back to our idea of thinking representing an arbitrary semigroup as a collection of
words under concatenation with some words representing the same element:

Theorem 1.1.10 (Fundamental property of free semigroups). Let A+ be the free semigroup.

7

1.1. SEMIGROUPS CHAPTER 1

Then for any semigroup S and function φ : A → S there exists a unique homomorphism φ̂ :
A+ → S such that φ̂(a) = φ(a) for all a ∈ A.

In particular, if S has a generating set U ⊆ S, then taking φ : U → S to be the inclusion map, we
conclude that U+/ kerφ ∼= S.

This means that, given any semigroup S and generating set U , we can think of S as consisting of words
over the alphabet U , with multiplication given by concatenation, where there exists a congruence
capturing among its equivalence classes all the words that represent the same element.

Now, using these ideas as a basis we are finally ready to define the main way we will represent
semigroups and their elements in this paper:

Definition 1.1.11 (Presentation). Let A be a set and ρ ⊆ A+ × A+ be any relation. Then we
call the pair (A, ρ) a presentation, often writing it as ⟨A|ρ⟩ instead. If A and ρ are finite, then we
call the presentation finite.

A semigroup S is said to be presented by ⟨A|ρ⟩ if S ∼= A+/ρ♯.

We can think of the elements (l, r) ∈ ρ as rules for converting one word into another:

Lemma 1.1.12. [4, Proposition 2.7] Let A be a set and ρ ⊆ A+×A+. If the words u, v ∈ A+ are
in the same equivalence class in ρ♯, then there exists a sequence of words u = w1, w2, . . . , wn = v
and relations (l1, r1), . . . , (rn−1, ln−1) ∈ ρ such that for every i ∈ {1, . . . , n − 1}, either there is a
subword of wi equal to li such that replacing that subword by ri we get wi+1 or there is a subword
of wi equal to ri such that replacing it by ri we get wi+1.

When writing presentations we often omit the curly braces for sets and write relations (l, r) ∈ ρ as
equations l = r instead, which is justified by Lemma 1.1.12. For two words u, v ∈ A+ we write u ∼ v
if (u, v) ∈ ρ♯ and the presentation is clear from context.

Example 1.1.13 (Some examples of presentations).

(a) Any semigroup (S, ·) is presented by ⟨S |xy = x ·y, ∀x, y ∈ S⟩. This presentation essentially
just encodes the binary operation within the relations.

(b) Consider the presentation ⟨a, b | aba = b, bab = b⟩. We can show that aa ∼ bb within the
semigroup presented by this presentation, since

aa ∼ a(a) ∼ a(bab) ∼ (aba)b ∼ bb

1.1.2 Varieties of semigroups
We now consider varieties of semigroups with a particular focus on the variety of bands. The exposition
is loosely based upon that of [8, Chapters 4.3-6].

Before we can talk about varieties, we have to introduce the concept of a direct product of semi-
groups:

Definition 1.1.14 (Direct product). Let {Sα}α∈A be a collection of semigroups indexed by the
set A (A is allowed to be infinite, even uncountable). Then the direct product of {Sα}α∈A, denoted∏

α∈A Sα is defined to be the semigroup whose elements are functions f : A→
⋃

α∈A Sα such that
f(α) ∈ Sα for all α, and multiplication is defined componentwise, i.e. (fg)(α) = f(α) g(α).

In the case of two semigroups S, T , their direct product can be shown to be equivalent to the
semigroup S × T with product (s, t)(u, v) = (su, tv).

8

CHAPTER 1 1.1. SEMIGROUPS

With this in mind we define a variety as follows.

Definition 1.1.15 (Variety of semigroups). A variety V of semigroups is a class of semigroups
that is closed under direct products, homomorphic images and subsemigroups.

This is to say, if {Sα}α∈A is a collection of semigroups belonging to the variety V, then
∏

α∈A Sα

also belongs to V. If S, T belong to V and f : S → T is a homomorphism, then im(f) belongs to
V. And finally, if S is a semigroup belonging to the variety V, and T ≤ S is a subsemigroup, then
T belongs to V as well.

Remark 1.1.16. We think of a class of objects as being any collection that is too large to be a
set. For example, there is no set of semigroups, since if such a set did exist, we could encode all
sorts of paradoxes akin to Russel’s paradox concerning the set containing all sets that do not contain
themselves. We therefore talk about the class of semigroups instead. Similarly a variety, as a collection
of semigroups, is a class. △

Varieties as defined above are rather difficult objects to understand, especially from a presentation
point of view that we set out to take in the previous section. We will now introduce a rather surprising
alternative description of varieties that helps us with this.

First we need to introduce a seemingly different way of defining a class of semigroups:

Definition 1.1.17 (Identical relation, equational class). Let X+ be the free semigroup on some
alphabet X. An identical relation is simply a pair of words (u, v) ∈ X+ × X+, we often write
it as [u = v] instead. A semigroup S is said to satisfy the identical relation [u = v] if for every
φ : X → S we have that φ̂(u) = φ̂(v) in S, where φ̂ is the unique homomorpishm φ̂ : X+ → S
extending φ.

For a given set R ⊆ X+ × X+ of identical relations, its equational class is defined to be the
collection of all semigroups that satisfy all of the identical relations in R. If R is finite, then we
call the equational class finitely based.

To make this more concrete, take for example the set X = {x, y, z} and the set of identical equations
R = {[xyxz = xz], [xzy = zyx]}, then their equational class is exactly the collection of all semigroups
S such that ∀x, y, z ∈ S, xyxz = xz and xzy = zyx holds. That is to say that in general, we can think
of the identical relations as specifying an equation that has to be true for all possible assignments of
variables.

One thing to note is that multiple different sets of relational equations can define the same equational
class.

Example 1.1.18 (Different sets of equations defining the same class). The identical relation [x = y]
defines the class of trivial semigroups, since any semigroup S in this class satisfies ∀x, y ∈ S, x = y
implies that S has at most 1 element, so the only semigroups in this class are the trivial semigroup
and the empty semigroup.

On the other hand, if we consider the equational class defined by the relations {[xy = yx], [xy =
x]}, then one can see that any semigroup S in this class must satisfy ∀x, y ∈ S, x = xy = yx = y.
So semigroups of this class also satisfy the identical relation [x = y], and we can further show that
in fact both classes are equal.

What is surprising is that varieties can be equivalently specified by identical relations:

9

1.1. SEMIGROUPS CHAPTER 1

Theorem 1.1.19 (HSP theorem). [8, Theorem 4.3.1] Every variety V is an equational class, and
every equational class is a variety.

Example 1.1.20 (Examples of varieties).

• The variety defined by the equation [xy = yx] is known as the variety of commutative
semigroups. So, for example, the set of reals together with multiplication belong to this
variety, since real multiplication is commutative. On the other hand, for a fixed n ≥ 2,
the set of all n× n matrices over the reals with matrix multiplication do not belong to this
variety, since matrix multiplication is not commutative.

• The variety defined by the equation [x2 = x] is known as the variety of bands. The flip flop
monoid from Example 1.1.4 is a band, since a2 = a, b2 = b, c2 = c from its multiplication
table.

• The variety of semilattices is defined by the identical relations [x2 = x, xy = yx]. For any set
X, the powerset P(X) = {Y : ∀Y ⊆ X} together with the union operation is an example
of a semigroup within this variety.

In the previous section we saw the importance of the free semigroup. We now exhibit an analogue of
the free semigroup within a variety:

Definition 1.1.21 (Free-V semigroup). Let V be the variety defined by the identical relations
R ⊆ X+ ×X+ over the set X. Then for a set A define the relation ρ by⋃

(u,v)∈R

{(φ̂(u), φ̂(v)) : ∀φ : X → A+}

Where φ̂ : X+ → A+ is the unique extension of φ to X+.

The free-V semigroup over A is then defined to be the semigroup FV(A) presented by ⟨A | ρ⟩.

As the name suggests, free-V semigroups satisfy a variation of the fundamental property of free semi-
groups:

Theorem 1.1.22 (Fundamental property of free-V semigroups). [8, Section 4.3] Let V be a variety,
A a set and S an arbitrary semigroup belonging to V. Then for any function φ : A → S there
exists a unique homomorphism φ̂ : FV(A)→ S such that φ̂(a) = φ(a) ∀ a ∈ A.

Therefore in a similar manner, we can talk about presentations for semigroups within a variety. This
is why the study of free-V semigroups is important — it provides us with an important way of
representing all semigroups within the variety.

Example 1.1.23 (Examples of free-V semigroups).

• Consider the variety of commutative semigroups. Then its free-V semigroups for A = {a, b, c}
by definition is the semigroups presented by ⟨a, b, c |xy = yx ∀x, y ∈ A+⟩. This presentation
has quite a large set of relations, but it can be shown that actually only 3 suffice - the
presentation ⟨a, b, c | ab = ba, bc = cb, ca = ac⟩ presents the same semigroup.

Furthermore, we can rewrite any word u ∈ A+ using these rules so that all the a’s occur
first, all the b’s occur second and the c’s occur last. In this way, every word can be rewritten
as aibjck, i, j, k ∈ {0, 1, . . .} with i+ j + k ̸= 0.

• Consider the variety of bands. Let A = {a, b}. Then the free-V semigroup over A within
the variety of bands is presented by ⟨a, b |x2 = x ∀x ∈ A+⟩.

10

CHAPTER 1 1.2. COMPUTATION

One could speculate by analogy with the previous example that this presentation is equiv-
alent to ⟨a, b | a2 = a, b2 = b⟩, but this is wrong! Indeed, one can show that FV(A) has only
6 elements, but ⟨a, b | a2 = a, b2 = b⟩ defines an infinite semigroup!

• For the variety of semilattices one can show that the free-V semigroup over a finite set A is
always isomorphic to the set on non-empty subsets of A under union.

1.2 Computation
We now turn our attention to the questions of computation, with particular emphasis on computing
with semigroups.

In this section we will first formally introduce the theory of computation and decidability in order
to give a precise formal definition of the word problem in semigroups. Afterwards computational
complexity is introduced, and we review two related computational problems and outline how solving
them can help us solve the word problem and be otherwise beneficial.

A great book for further reading on theory of computation is [14].

1.2.1 A quick overview of the theory of computation
We base this section on [14, Chapters 3-4].

Very informally, an algorithm could be seen as a set of instructions that can be performed on some
input data to produce a result. A Turing machine formalizes this idea by giving a clear definition of
input, basic instructions that can be performed, and the way in which a computation stops.

We model it as consisting of a set of states along with state transitions that roughly correspond to
different steps of the computation, as well as an infinite tape for memory and a tape head. Initially
the tape contains the input to the computation, and the Turing machines tape head is centered on
the first input symbol, the rest of the tape is filled with blank symbols, and the Turing machine is in
a designated initial state.

A computation then proceeds by reading the symbol on the tape that is under the tape head. Then,
depending on the current state and the symbol read, we write a symbol on the tape, move the tape
head either left or right and change the current state. This continues until we reach an accepting or
rejecting state.

As output, we get whatever is on the tape at the end of the calculation as well as whether we accepted
or rejected the input.

Definition 1.2.1 (Turing machine). [15] A deterministic Turing machine M is a 7-tuple

(Q, : wΣ,Γ, q0, qa, qr, ◦)

consisting of a finite set of states Q, a finite input alphabet Σ that does not contain the blank
symbol “_”, a finite tape alphabet Σ ⊆ Γ, states q0, qa, qr ∈ Q that are the initial, accepting and
rejecting states respectively, and finally ◦ : Q×Γ→ Q×Γ×{L,R} the state transition function.

For a given input word w ∈ Σ∗, the tape initially consists of only w followed by infinitely many
blank symbols. Initially we are in state q0 and the tape head points to the first letter of w.
Afterwards, if our state is q and the symbol that the tape head is pointing to is a, then we use
the state transition function to determine q ◦ a = (q′, a′, D), where q′ is the new state, a′ is the
new symbol under the tape head, and D ∈ {L,R} determines whether to move the tape head
left or right along the tape respectively (if we are at the leftmost position along the tape the no
movement happens).

The computation terminates when we reach either qa or qr. If we reach qa, then the input word w

11

1.2. COMPUTATION CHAPTER 1

is accepted by the Turing machine. Otherwise, if qr is reached, then the word w is rejected. Note
that it is possible for a computation to not terminate by never reaching either the accepting or
rejecting state.

If a Turing machine accepts the input, then its output is the word on the tape at the end of the
computation without the infinite tail of empty symbols. In this way, a Turing machine computes
a function f : D → Γ∗ where D ⊆ Σ∗ is the set of all words accepted by M.

Now that we have defined a computing device, we can give a formal definition of a computational
problem:

Definition 1.2.2 (Decidable language, decision problem). Let Σ be given. We call a subset
L ⊆ Σ∗ a language. A language L is decidable if there exists a Turing machineM that accepts all
words in L and rejects all words not in L. The decision problem for L asks whether L is decidable
or not.

While the Turing Machine seems like a rather strange and limited machine for performing compu-
tations, the Church-Turing thesis [5] asserts that the Turing machine is the most general possible
device for computation, in the sense that no other reasonable computational device can decide strictly
more languages than the Turing machine can. While it was first formulated by Church for the model
of computation known as the lambda calculus in [5], in [15], Turing shows the equivalence between
lambda calculus and Turing machines. Since its first formulation in 1936, he thesis has withstood the
test of time, and it is generally accepted to be the definition of computability.

Remark 1.2.3 (A note on encoding). Although decision problems are defined with respect to words
and languages, often we would like to ask similar questions about non-word data. For example we
might want to know if a given graph (say a network of cities connected by roads) is connected (if
we can get a city to any other city by following the roads), or maybe we want to know if a given
presentation corresponds to a finite semigroup.

This is where the notion of encoding comes into play. Essentially every such problem can be encoded
into a word in one way or another. For example, we could encode our city network by writing down how
many cities there are and then for every road writing which pair of cities it connects. Alternatively,
we could write out a matrix row by row, where (i, j)-th entry is 0 or 1 depending on whether the i-th
and j-th city have a road between them. Similarly, we can write down a number, for example by using
its binary expansion (since our input alphabet has to be finite).

It turns out that the encoding used for the problem does not change whether or not it is decidable,
but it could change the running time of the Turing machine deciding it (more on this later). △

We would like to stress that in the rest of this work we will treat the algorithmic aspects less formally.
In particular we aim to describe our algorithms at a higher level by either describing the high level
idea, or writing out pseudocode (a human readable intermediate description) rather than writing out
Turing machines for solving the problem explicitly, as that would be extremely impractical and would
make the key ideas of the algorithms much harder to understand.

Example 1.2.4 (Some example decision problems).

• For a given triple of integers a, b, c, is a + b = c? We could encode this for example by
1a#1b#1c, this would be an encoding of the problem in unary. The problem is decidable,
and one way of solving it is by traversing 1a and 1b and crossing off a 1 from 1c for every
1 in 1a or 1b. We then accept if we had to cross off exactly as many 1’s as there were in 1c

and reject otherwise. So this problem is decidable.

• Another encoding for the a + b = c problem would be to encode a, b and c in binary, and
then concatenate them with # as a separating character. This is now a considerably more
difficult problem, since we cannot just go along the tape crossing off digits, we need to

12

CHAPTER 1 1.2. COMPUTATION

actually implement some sort of binary addition scheme.

• For a given number n, is n prime? This too can be decided. We essentially go through all
possible numbers less than p and check if each of them divides p or not.

• Given a graph, is it connected? This too can be decided, essentially by starting at a vertex
x and marking it as visited, then for every edge (x, y) emanating from x, we visit the vertex
y if it isn’t marked and repeat the marking and visiting process until we cant go to an
unmarked node anymore. If some node is still unmarked after this, clearly the graph is not
connected. We then repeat this process with all other vertices in the graph.

• The halting problem asks, for a given Turing machine M , and input u, does M halt? Note
that as before the specific encoding of M and u is not important.

We finish the section off with a rather surprising result, which showcases that not everything can be
computed, even in principle:

Theorem 1.2.5. The halting problem is undecidable.

The proof is beautiful, and can be found in [14, Theorem 4.11]. Many computational problems within
the realm of semigroups are undecidable, we will discuss in particular the word problem in the next
section.

In fact, the situation is even worse than first appears. For any finite alphabet A, the set of all words
A∗ can be shown to be countably infinite (i.e. the set of words is in a bijective correspondence with the
naturals), therefore the set of all languages L ⊆ A∗ is equal to the power set P(A∗), which can be shown
to be uncountable (infinite and strictly larger than the naturals). Finally, the set of Turing machines
can be shown to be only countable as well. Therefore, due to the immense difference between the
cardinality of all languages, and the cardinality of Turing machines, and therefore decidable problems
we can say that, in some sense, almost all languages are undecidable.

1.2.2 The word problem in semigroups
With the above in mind we can define:

Definition 1.2.6 (Word problem). Let A be a and ρ be a relation on A+. Let S be the semigroup
presented by ⟨A | ρ⟩. Then the word problem in S with respect to A, ρ is the decision problem that
asks, for any two u, v ∈ A+, is u ∼ρ♯ v or not?

In other words, we are given two products of generators of S and want to find out whether they
evaluate to the same element in S or not. Note that we do not require A and ρ to be finite, although
very often it is the case that they are. When working with free bands later, we will have A finite and
ρ infinite.

A classic result of [11] shows that

Theorem 1.2.7 (The word problem is undecidable). There exists a set A and a finite relation ρ
on A+ such that the associated word problem is undecidable.

Therefore we cannot come up with a general purpose algorithm that would solve the word problem
for an arbitrary semigroup!

However, if we fix A and ρ, then within the specific semigroup there might be an algorithm for deciding
the word problem. Here is a small selection of word problems:

13

1.2. COMPUTATION CHAPTER 1

Example 1.2.8 (Some word problems).

(a) Consider the free commutative semigroup on 3 generators, we saw before that is has the
presentation ⟨a, b, c | ab = ba, ac = ca, bc = cb⟩. Consider the word problem in this semigroup
with respect to A = {a, b, c}, ρ = {(ab, ba), (ac, ca), (bc, cb)}.

We showed earlier, that using the relations, any word w ∈ A+ can be rewritten as aibjck

with i+ j+ k ̸= 0, lets call this the “sorted” form of w, since all the letters of w were sorted
in alphabetical order.

Clearly if two words u, v ∈ A+ have the same sorted form then they are equivalent, since
each word is equivalent to its sorted form, and equivalence is transitive. We can further
show that the opposite also holds - two words are equivalent if and only if their sorted forms
are equal.

But this gives us a simple way of solving the word problem - count the number of times each
letter occurs in each word. The compare the counts and accept the pair if the counts are
the same and reject otherwise. One can show that this can be done with a Turing machine.

(b) In general, every finitely presented commutative semigroup has a solvable word problem [1].

(c) In [9] it is shown, perhaps surprisingly, that for the set A = {a, c, e, f}, and relation
ρ = {(ac, ca), (af2, f2a), (fac, cfa), (eca, ce), (ef3a, f2e), (a2c2e, a2c2)}, the word problem
is undecidable!

(d) Consider ⟨a, b | abna = aba∀n ∈ N⟩. This is an example of an infinite presentation with a
solvable word problem.

1.2.3 Computational complexity
This section is based on [14, Chapters 7-8].

Knowing whether a problem is decidable or not is important, however, in practice it is equally im-
portant to know how long a given computation will take. Indeed, if a problem is decidable, but the
best method we have for deciding it takes longer than the lifetime of the universe, then it is of little
practical use. Furthermore, as many students can attest, sometimes even if the best possible method
is known and fast, it is still possible to manage to implement in a manner which runs for longer than
the lifetime of the universe.

Therefore we now embark on defining how to quantify the resources used by a computation. We will
primarily be focused on the time that a computation takes and the amount of space it requires.

Definition 1.2.9 (Time and space complexity). Let M be a deterministic Turing machine that
halts on every input. Then the time-complexity of M is the function t : N→ N such that t(n) is
the maximum number of stepsM takes on any input of length n. Similarly, the space-complexity
is the function s : N → N such that s(n) is the maximum number of tape cells that M visits on
any input of length n.

If a problem can be solved by a Turing machine with time complexity t(n) and space complexity
s(n), then we say that the problem is t(n)-time and s(n)-space solvable.

As currently stated, the time and space complexity of a Turing machine is a very specific quantity
that might be hard to calculate exactly. The following theorem actually shows that, in some sense,
instead of calculating the exact time or space complexity, we should really be looking at their growth
rate:

Theorem 1.2.10 (Linear speedup theorem, linear compression theorem). In what follows let n
be the size of the input.

14

CHAPTER 1 1.2. COMPUTATION

If a decision problem can be solved in time t(n), then for any ϵ > 0 there exists a Turing machine
solving the problem in time at most ϵt(n) + 2n+ 3.

If a decision problem can be solved in space s(n), then for any ϵ > 0 there exists a Turing machine
solving the same problem in space at most ϵ · s(n) + 2.

In other words, provided our Turing machine has time complexity at least n (which is a reasonable
assumption, since that is how much time it takes to fully read the input), then we can always improve
the time complexity by a constant factor. Similarly we can improve the space by a constant factor as
well.

So this motivates us to instead consider the asymptotics of the time and space complexity, rather than
pinning them down exactly. To this end we introduce O notation.

Definition 1.2.11 (Big O). In what follows let R+ = {x ∈ R : x ≥ 0} to be the set of non-negative
reals, as opposed to the set of words over R.

For a given function f : N → R+, we define O(f) to be the set of all functions g : N → R+ for
which there exists constants C ∈ R, N ∈ N with C > 0 such that for all n > N , g(n) ≤ Cf(n).

In other words, O(f) captures all the functions that have the same or slower growth than f as n→∞.
We will use O notation to describe the worst case time or space complexity of algorithms.

Example 1.2.12.

(a) Clearly f ∈ O(f) for all f : N→ R+.

(b) 0.001n2 + 2n+ 100 ln(n) ∈ O(n2), but it is not in O(ln(n)).

(c) O(f + g) = O(max(f, g)), so we only need to consider the largest O-class of any function of
a product.

(d) O(n) ⊊ O(n2) and in general O(nα) ⊊ O(nβ) for α < β.

From now on we will speak of a problem having time complexity O(f) and space complexity O(g)
if there exists a Turing machine solving it with time complexity in O(f) and space complexity in
O(g).

Note that for a given decision problem, the time and space complexity depend on the encoding. So,
for example, if we wished to decide if a + b = c with a, b, c given in unary, then this would take at
least time O(a+ b+ c), since we need to at least read all of the input. However, if we encoded a, b, c in
binary, then we can exhibit a O

(
(ln(a) + ln(b) + ln(c))2

)
time algorithm, since the encoding of a, b, c

in binary is exponentially smaller than the actual numbers themselves.

Furthermore, while Turing machines are excellent models for machines in terms of figuring out qual-
itatively what a machine can or cannot compute, the time and space complexity of a problem can
change if we give the Turing machine certain extra capabilities. For example

Example 1.2.13. Consider a new type of Turing machine, called the two tape Turing machine,
which has an additional tape and tape head that can be manipulated in the same way as the tape
for the original Turing machine.

Now consider the decision problem for the language {0k1k : k ∈ N}. We can solve it in O(n) time
on a two tape Turing machine as follows: first copy all the initial zeros onto the second tape, then
alternate reading off 1’s from the first tape and crossing off 0’s from the second tape. Accept if
we stopped reading 1’s and crossing off 0’s at the same time, and there are no more symbols to
read on the input tape and no more to cross out, reject otherwise.

On the other hand, one can show [14, Problem 7.47] that the only languages that are decidable

15

1.2. COMPUTATION CHAPTER 1

in O(n) time on a single tape Turing machine are so called regular languages (more on this later).
But it can be shown that {0k1k : k ∈ N} is not a regular language.

Similarly, a typical computer has a random access memory that allows it to access any part of the
memory in a roughly constant amount of time, in contrast a Turing machine will take at least n steps
to reach the n-th tape position.

It is for these reasons that we adopt a primitive based approach to modeling the quantitative aspects
of computation. We will assume that there are certain “primitive” operations that take constant time
and space to execute and use them to build more complicated algorithms later on. Instead of listing
all such primitive operations here, we will mention them as need for them arises.

With this in mind we now analyze a very simple example.

Example 1.2.14. Consider the word problem in the free commutative semigroup on three gener-
ators, that is the word problem associated to the presentation ⟨a, b, c | ab = ba, ac = ca, bc = ca⟩.
We showed before that solving this word problem consists of counting the number of letters that
occur in each word and checking that the counts for both words are the same. We now outline an
algorithm for doing so and analyze its space and time complexity.

For primitives we assume that it is possible to do arithmetic operations in constant time and
space, it is possible to assign a value to a variable in constant time and space, and that it is
possible to access an arbitrary letter in a word in constant time and space.

The algorithm for solving the word problem AreEquivalent then uses a subroutine LetterCounts
for computing the count of each letter, and then compares the counts.

We have given a pseudocode implementation of LetterCounts in Algorithm 1 and of AreEquivalent
in Algorithm 2, depicted in Figure 1.1. In the notation,← denotes variable assignment, lines start-
ing with a pound sign # are comments, for is a keyword indicating iteration and if is a conditional
statement.

Let us now analyze the time and space complexity of this algorithm. The subroutine LetterCount
initializes 3 variable, each of which takes O(1) time and space by our assumptions, then it iterates
through the letters of w, and performs and arithmetic operation and assignment, each of which
take O(1) time, and this happens once for each letter, so |w| times. Finally we return the values
which also takes O(1) time and space according to our primitives. Therefore we utilize O(1+ 1+
1+ |w| · (1+ 1)+ 1) = O(|w|) time, and similarly we can show that we use O(|w|) space (since we
need to store the input).

Finally, AreEquivalent calls LetterCount once for each of u and v, performs assignments, and
then does one comparison for each letter in the alphabet. So this gives a total of O(|u|+ |v|) time
and space as well.

We stress that this isn’t the time complexity of the problem on a Turing machine. Indeed,
arithmetic operations on a Turing machine cannot be implemented in constant time, and similarly
we cannot access arbitrary variables in constant time either. Rather, it is the complexity of
the algorithm for a machine supporting our primitives, which we selected to roughly model the
capabilities of a modern computer.

1.2.4 Normal forms and complete invariants
This section borrows ideas and notation from literature on the graph isomorphism problem, namely
the notion of a complete invariant and canonical (normal) form. The latter appears in semigroup
theory, however the former is discussed less often. We will also see how these are related to the word
problem and how they can aid us in solving it.

16

CHAPTER 1 1.2. COMPUTATION

Algorithm 1: LetterCounts(w)
Data : w ∈ {a, b, c}+
Result : The number of times

each letter occurs in w
1 # The variables countx will store

the number of occurrences of
each letter

2 counta ← 0
3 countb ← 0
4 countc ← 0
5 for letter x in w do
6 countx ← countx + 1
7 end for
8 return counta, countb, countc

Algorithm 2: AreEquivalent(u, v)
Data : u, v ∈ {a, b, c}+
Result : True if u ∼ v and False otherwise

1 countua, countub , countuc ← LetterCounts(u)
2 countva, countvb , countvc ← LetterCounts(v)
3 for x ∈ {a, b, c} do
4 if countux ̸= countvx then
5 return False
6 end if
7 end for
8 return True

Figure 1.1: Algorithms for solving the word problem in the free commutative semigroup on 3 genera-
tors.

Definition 1.2.15 (Complete invariant, normal form). Let A be a set and ρ a congruence on
A+ × A+. Then a normal form is any function ζ : A+ → A+ such that u ∼ v if and only if
ζ(u) = ζ(v). Similarly a complete invariant is any function ξ : A+ → D, where D is an arbitrary
set, such that u ∼ v if and only if ξ(u) = ξ(v).

Clearly, a normal form is a special case of a complete invariant.

Example 1.2.16. Consider the word problem in the free commutative semigroup ⟨a, b, c | ab =
ba, ac = ca, bc = cb⟩.

As we showed before, u ∼ v if and only if u and v contain the same number of a’s, b’s and c’s.

An example normal form would therefore be ξ(w) = aibjck, where i is the number of a’s, j the
number of b’s and k the number of c’s.

An example of a complete invariant would be ξ : A+ → N3 given by ξ(w) = (i, j, k), i.e. we map a
word to a vector containing the number of letters in each of its coordinates. Note that Algorithm 1
LetterCounts computes exactly this invariant.

From a purely theoretical point of view, normal forms are not particularly interesting, since if we can
get a normal form for any set and congruence instantly by invoking the axiom of choice. However, if
the normal form can be efficiently computed, then we can use it to solve the word problem.

Indeed, if ζ is a normal form, and we can compute ζ(w) in time O(f(n)) where n = |w|, and the size
of the output |ζ(w)| is in O(s(n)), then to check if u ∼ v, we simply compute the normal form of u
and v and then compare if the normal forms are identical. We can check if two words are identical in
O(n), so the total runtime is O(f(n) + s(n)) where n = |u|+ |v| is the total size of the input. (Note
that we assume that f and s are superadditive for this time analysis, that is f(a + b) ≥ f(a) + f(b)
for all a, b ∈ N, this is a reasonable assumption).

Similarly, if we have a complete invariant ξ : A+ → D and there is an algorithm for comparing elements
of D, then we can solve the word problem by computing the complete invariant of each element and
comparing the invariants. The total time complexity is then O(f(n)+g(s(n))) where O(f) is the time
complexity of computing the invariant, O(s) is the size of the complete invariant, and O(g) is the time
complexity of comparing two invariants.

Using normal forms or complete invariants has additional advantages. For example, if we had a
collection of words and we wanted to see which words a given word is equivalent to, we could compute

17

1.3. AUTOMATA AND TRANSDUCERS CHAPTER 1

the complete invariant of each element in the collection in O(f(n)) time once, and then store the
output of these computations. Now every subsequent equality test only costs us O(g(s(n))) time,
which can be considerably less than O(f(n)).

If s(n) is less than n, then storing the complete invariants takes less space than storing the original
words, so this is also an advantage.

Finally, if we can endow the set of complete invariants D with a computable binary operation, turning
it into a semigroup in a such a way that D ∼= A+/ρ, then we gain a computational representation of
the semigroup A+/ρ, which is very desirable in computational algebra.

Example 1.2.17. Taking the free commutative semigroup as before, we can see that while storing a
word takes O(i+j+k) letters, where i, j, k are the count of each letter in the alphabet respectively,
storing the complete invariant (i, j, k) only takesO(ln(i)+ln(j)+ln(k)) if we represent each number
in binary, an exponential improvement!

Furthermore, if ξ(u) = (i1, j1, k1) and ξ(v) = (i2, j2, k2), then we can show that ξ(uv) = (i1 +
i2, j1 + j2, k1 + k2), and this addition can be efficiently implemented.

So by using a complete invariant we have represented the free commutative semigroup inside of
N3 with componentwise addition, and shown that the complete invariants can be efficiently stored
and multiplied.

Our motivation is exactly as laid out above — in this masters project we derive a complete invariant
for elements of the free band that have desirable size and comparison properties, and then endow them
with an efficient multiplication.

1.3 Automata and transducers
Automata are a very simple type of computing machine, with much lesser capabilities than a Turing
machine. They are still useful, however, since they are great for matching patterns in words, and their
simplicity allows for very efficient storage and computation with them.

Our main use for these structures will be in deriving a specific type of complete invariant based
on minimal acyclic transducers. Therefore a large part of this section is dedicated to the theory and
algorithms for acyclic automata, and then showing that these port over nicely to the type of transducer
that we will be using in this project.

1.3.1 Automata basics
From a purely structural point of view, an automaton is just a directed edge colored graph with certain
distinguished vertices. What makes them interesting objects of study, however, is the interpretation
of automata as machines for detecting certain patterns in words.

To do this, when given a word, an automaton reads it letter by letter, and modifies its state depending
on its current state and the current letter. Once there are no more letters to read, the automaton then
checks whether its current state is accepting, in which case the word does indeed contain the pattern
that the automaton was looking for.

We formalize these ideas as follows:

Definition 1.3.1 (Automaton, regular language). A deterministic finite state automaton A is a
5-tuple (Q,A, q0, T, ◦) consisting of a finite set of states Q, a finite alphabet A, an initial state
q0 ∈ Q, a set of terminal states T ⊆ Q and a partial function ◦ : Q × A → Q called a state
transition function.

It is often convenient to extend the function ◦ to act on words w ∈ A∗. This is done by processing

18

CHAPTER 1 1.3. AUTOMATA AND TRANSDUCERS

w letter by letter, i.e., if w = w1w2 . . . wn with w1, w2, . . . , wn ∈ A, then q ◦ w = (. . . ((q ◦ w1) ◦
w2) ◦ . . .) ◦ wn. Also, q ◦ ε = q.

A word w ∈ A∗ is recognized by A if q0 ◦ w ∈ T . The set of all words recognized by A is known
as the language of A. We call a subset L ⊆ A+ a regular language if L is the language of some
automaton.

Recall from Definition 1.1.1 that a partial function f : X → Y is a function that is allowed to be
undefined on some inputs. If f is undefined on x, then we write f(x) = ⊥, where ⊥ is taken to be a
formal symbol disjoint from Y . Composition is taken in the usual manner with f(⊥) = ⊥.

Remark 1.3.2. Note that in some textbooks deterministic automata are required to have a total
transition function, for example [14, Definition 1.5], i.e. we need to have q ◦a ∈ Q for all q ∈ Q, a ∈ A,
and cannot leave it undefined at some inputs as we did above. However, in literature relating to
automata minimization, partial transition functions are used, for example they are explicitly used
in [6] and implicitly in [13].

While this difference in definition is slightly confusing, it turns out that the set of languages recognized
by automata of either definition coincide. This is because, if we are given a partial transition automaton
A = (Q,A, q0, T, ◦), we may create a new automaton A′ = (Q∪{r}, A, q0, T, ◦′) with new a “garbage”
state r, and make all the undefined transitions lead to r, that is

∀ a ∈ A, ∀ q ∈ Q, q ◦′ a =

{
r if q ◦ a = ⊥
q ◦ a otherwise

and r ◦′ a = r

Clearly A′ has a complete state transition function, and one can show that A and A′ recognize the
same language.

Since the partial function definition is prevalent in literature on automata minimization, it is the one
we take in this work. △

Example 1.3.3 (Basic examples of automata and regular languages).

(a) The language {an : n ≥ 1} is regular. Indeed, an automaton recognizing it is given by
A = (Q,A, q0, T, ◦) with A = {a}, Q = {1, 2, 3}, q0 = 1, T = {2, 3} and transition function
◦ given by 1 ◦ a = 2, 2 ◦ a = 3, 3 ◦ a = 3.

Automata can be drawn in a graphical manner similar to graphs — we draw nodes labeled
by the states Q, and connect two states q1, q2 by an arrow labeled x is there is a transition
q1 ◦ x = q2. The initial state is denoted by an unlabeled arrow which points into the node,
and terminal states are denoted by unlabeled arrows pointing outside the node.

In this way, the above automaton can also be drawn as:

1 2 3
a a

a

(b) The language L = {a, b, ab, aabb} is regular. Note that a language can be recognized by
multiple automata, here we exhibit two automata recognizing L:

A1 = 1

2

3

4 5 6

a

b

b

a

b b A2 = 1

2

3

4 5

a

b

b

a

b

b

(c) In a similar vein, any finite language W = {w1, w2, . . . wn} ⊆ A∗ can be shown to be regular.

19

1.3. AUTOMATA AND TRANSDUCERS CHAPTER 1

Indeed, let A = {Q,A, q0, T, ◦} be an automaton with one state for every possible prefix,
Q = {u ∈ A+ : u is a prefix of some w ∈W}, the initial state being the empty word q0 = ε,
and every word in the language being a terminal state, i.e. T = W . Finally, for all x ∈ A, we
define ◦ ny q ◦ x = qx if qx is a prefix, and define q ◦ x = ⊥ to be undefined otherwise. We
can show that this automaton accepts exactly W . It is known as the trie for the language
W .

To demonstrate, for W = {aab, abb, abba, baba, abbcab, abc}, the trie automaton is given by

ε

a b

aa ab ba

aab abb abc bab

abba abbc baba

abbca

abbcab

a b

a b a

b b c b

a c a

a

b

(d) The language {w ∈ {a, b}+ : w contains aba as a subword} is regular.

It is recognized by

1 2 3 4
a

b

b

a

a

b

a

b

Now we give a notion of isomorphism for automata:

Definition 1.3.4 (Automata isomorphism). Two automata A1 = {Q1, A1, q0,1, T1, ◦1} and A2 =
{Q2, A2, q0,2, T2, ◦2} are called isomorphic if they have the same alphabet A1 = A2, and there
exists a bijection f : Q1 → Q2 such that f(q0,1) = q0,2, f(T1) = {f(t) : t ∈ T1} = T2 and
f(q ◦1 x) = f(q) ◦2 x for all q ∈ Q1, x ∈ A1.

Put simple, two automata are isomorphic if they differ by a relabeling of their states. One can
show that automata isomorphism can be decided in time and space O(n) where n is the number of
transitions of the automaton. The algorithm proceeds by trying to construct a bijection, starting by
identifying the initial states of both automata, and then building up the isomorphism by following the
transitions.

The same language can be recognized by multiple different automata. It turns out that there is
actually a unique smallest automaton recognizing any given regular language!

Theorem 1.3.5 (Existance of a minimal automaton). [3] Let L be a regular language. Let A
be an automaton recognizing L such that A has the least amount of states among all automata
recognizing L (clearly such an automaton exists, as the number of states is a natural number, and

20

CHAPTER 1 1.3. AUTOMATA AND TRANSDUCERS

at least one automaton recognizes a regular language by definition). The any other automaton
recognizing L with the same number of states as A is isomorphic to A.

We call this automaton the minimal automaton recognizing L.

The process of taking an automaton A and finding the minimal automaton recognizing the same
language as A is called minimization. One can show that minimization can be achieved by removing
and merging together certain states of A.

This is made more formal in [3]:

Definition 1.3.6. Let A = (Q,A, q0, T, ◦) be an automaton.

A state q ∈ Q is called accessible if we can reach it by following state transitions from the initial
state, i.e. if there exists w ∈ A∗ such that q0 ◦w = q. A state q ∈ Q is co-accessible if we can reach
a terminal state from q, i.e. if there exists w ∈ A∗ such that q ◦ w ∈ T . A is called connected if
every state is both accessible and co-accessible.

The right-language of a state q ∈ Q is the set of all word that are accepted by the automaton if
the initial state were q0, i.e. {w ∈ A+ : q ◦ q ∈ T}. Two states are equivalent if they have the same
right-languages and inequivalent otherwise.

Theorem 1.3.7 ([3], Definition 1). An automaton is minimal if and only if it is connected and
every pair of states is inequivalent.

Given any automaton, one can construct a connected automaton accepting the same language in O(n)
time and space, where n is the total number of transitions of the automaton. To do this, we do two
traversals of the automaton. We start the first traversal at the initial state, and mark every state we
visit red, these will be the accessible states. Then we proceed by doing a traversal from the terminal
nodes and following the transitions in reverse, marking states blue as we go, these are the co-accessible
states. Finally we create a new automaton keeping only those nodes that have been marked both red
and blue.

Removing equivalent states is much more difficult. Hopcroft’s algorithm for general automata mini-
mization can do this in time O(n ln(n)) and is the best known algorithm for doing so. See [2] for a
more in depth look at automata minimization algorithms.

Since the minimal automaton is unique, minimization produces a normal form for automata, where
we call two automata equivalent if they recognize the same language.

1.3.2 Acyclic automata
We now turn our attention to a much simpler class of automata, known as acyclic automata.

Definition 1.3.8 (Acyclic automaton). An automaton A = {Q,A, q0, T, ◦} is called acyclic if
∀q ∈ Q,w ∈ A∗, q ◦ w ̸= q.

In other words, there is no state such that following some sequence of transitions leads us back to the
same state.

We can characterize the languages accepted by acyclic automata quite easily

Theorem 1.3.9. Every finite language is accepted by an acyclic automaton, and every acyclic
automaton accepts a finite language.

21

1.3. AUTOMATA AND TRANSDUCERS CHAPTER 1

Proof. As we saw in Example 1.3.3 (c), every finite language is accepted by a trie automaton, and it
can be easily verified that it is acyclic, since every transition increases the length of a states label by
one.

On the other hand, if an automaton is acyclic and has n states, then it cannot accept a word of length
n + 1, since otherwise, by the pigeonhole principle, some state must be repeated as we traverse the
word to an accepting state. But this repetition implies a cycle, a contradiction. △

So acyclic automata recognize a very limited set of languages. At the same time, they can be minimized
with better time and space complexity than a general automaton.

Theorem 1.3.10 (Revuz minimization [13]). An acyclic automaton can be minimized in O(n)
time and space, where n is the number of transitions of the automaton.

Recall from Theorem 1.3.7 that an automaton is minimal if and only if it is connected and no two
states are equivalent. We already saw that creating an equivalent connected automaton can be done
in time and space O(n).

The key insight of Revuz is that the states of a connected acyclic automaton can be partitioned into
layers. At the bottom layer are all the states that have no outgoing transition. At the next layer above
are all the states that have only transitions to states in the bottom layer. In general, the k-th layer
contains all the states that have transitions only to states in a lower layer, and at least one transition
to a state in the k − 1-st layer.

Minimization the proceeds from bottom to top. It is quite easy to see which states are equivalent
in the bottom layer (indeed, all states in the very bottom layer must be equivalent), so we can just
merge them. In general, once we have merged all the equivalent states in the first k − 1 layers, then
two states in the k-th layer are equivalent if and only if all the transitions from the two states are the
same (have the same labels and lead to the same state), since no pair of states in a lower layer are
equivalent.

To actually merge a layer we perform a radix sort, which takes linear time and space to sort a collection
of tuples.

In practice, instead of merging states straight away we usually pick a single state from each equivalence
class and make all relevant transitions point to this state. Then at the end we remove all non-accessible
states again.

Example 1.3.11. Consider the trie for {ababa, abcba, abba, ababc, abcbc}, we have drawn it below,
drawing all the nodes in the same layer at the same height:

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6 1

2

3

4 5

86 7

9 10 11 12 13

a

b

a
c

b

b b

a
c a

c a

Note that all the nodes in the first layer are equivalent, since their right languages are {ε}, so
after merging all of the we would be left with the transducer drawn on the left below:

22

CHAPTER 1 1.3. AUTOMATA AND TRANSDUCERS

1

2

3

4 5

86 7

{9, 10, 11, 12, 13}

a

b

a
c

b

b b

a, c a, c a

−→

1

2

3

4 5

8{6, 7}

{9, 10, 11, 12, 13}

a

b

a
c

b

b b

a, c a

−→

1

2

3

{4, 5}

8{6, 7}

{9, 10, 11, 12, 13}

a

b

a, c
b

b

a, c a

Note that now, states 6 and 7 both have exactly two transitions, one labeled with a and one
labeled with c to {9, 10, 11, 12, 13}, therefore they are equivalent so we perform another merge
(center). Finally we merge 4, 5 in Layer 3 (right). One can show that this automaton is indeed
equivalent to the original and is furthermore minimal.

1.3.3 Transducers
Whereas an automaton can be thought of as a machine for detecting patterns in words, a transducer
is a machine computing a relation between two sets of words. The theory of transducers in general is
quite rich, however we will only be interested in them in a very narrow part of that.

To this end, we define the transducers used in this work:

Definition 1.3.12 (Transducer). A deterministic synchronous finite state transducer T is a 7-
tuple (Q,Σ,Γ, q0, T, ◦, ∗) consisting of a finite set of states Q, an input alphabet Σ, an output
alphabet Γ, an initial state q0 ∈ Q, a set of terminal states T ⊆ Q, a partial state transition
function ◦ : Q × Σ → Q and a partial output function ∗ : Q × Σ → Γ. We require that the
domains of ◦ and ∗ coincide.

When processing a word w ∈ Σ∗, if we are in the state q and read the letter a, then we think of
q ◦ a as being the next state we transition into, and q ∗ a as the letter we write to the output.

We extend ◦ to words w ∈ Σ∗ in a similar manner to how we did with automata.

The function realized by T is the partial function fT : Σ∗ → Γ∗ given by

fT (a1a2 . . . an) = q0 ∗ a1 · (q0 ◦ a1) ∗ a2 · (q0 ◦ a1a2) ∗ a3 · · · (q0 ◦ a1a2 . . . an−1) ∗ an

if q0 ◦ a1 . . . an ∈ T and fT (a1a2 . . . an) = ⊥ otherwise.

Here are some examples to demonstrate what we mean:

Example 1.3.13 (Simple examles of transducers).

(a) Consider the transducer T = (Q,Σ,Γ, q0, T, ◦, ∗) with Q = {1, 2}, Σ = {0, 1}, Γ = {a, b, c},
q0 = 1, T = {2}, transition function given by 1 ◦ 0 = 2, 1 ◦ 1 = 1, 2 ◦ 0 = 2, 2 ◦ 1 = 1 and
output function given by 1 ∗ 0 = b, 1 ∗ 1 = a, 2 ∗ 0 = b, 2 ∗ 1 = c.

Similar to automata, there is a visual way of drawing transducers, where we denote the
transition q1 ◦ a = q2 with output q1 ∗ a = b by an arrow from q1 into q2 labeled a/b.

So we can draw this same transducer as:

23

1.3. AUTOMATA AND TRANSDUCERS CHAPTER 1

1 2

0/b
1/a

1/c

0/b

The function realized by this transducer fT is defined for all words ending in 0. Some
example evaluation of it are fT (010001) = ⊥, fT (10010) = abbcb and fT (1110001100010) =
aaabbbcabbbcb

(b) Consider the transducer given in the picture below

1 2
0/1

1/0 0/0

1/1

The function that it realizes fT (x) can be seen to compute the first n digits of x+1, where
n is the number of digits of x and we interpret the word x as a number given in binary
with little endian convention (smallest bit is leftmost). So for example 23 in this convention
becomes 11101, and fT (11101) = 00011 which is the little endian representation of 24.

Transducers might seem quite similar to automata, and that is because they are! In fact we can
establish an equivalence between transducers and automata:

Theorem 1.3.14. Every deterministic synchronous finite state transducer with input alphabet
Σ and output alphabet Γ is equivalent to a finite state automaton with alphabet Σ× Γ.

Proof. In essence, a transducer T = (Q,Σ,Γ, q0, T, ◦, ∗) becomes the automatonA = (Q,Σ×Γ, q0, T, ◦′),
where q ◦′ (a, b) = q ◦ a if q ∗ a = b, and q ◦′ (a, b) = ⊥ otherwise, for all q ∈ Q, (a, b) ∈ Σ×Γ. One can
show that the language accepted by A is actually the relation of the function realized by T .

This map from transducers into automata can be seen to be injective, hence we think of the image of
a transducer under this map as its automaton representation. △

Therefore the notions of isomorphism, equivalence, acyclic properties and minimization theory and
algorithms can be applied to transducers if in a slightly modified manner from their automata coun-
terparts.

To state some of these explicitly: two transducers are isomorphic if they are identical up to a relabeling
of the states. They are equivalent if they realize the same function. A transducer is acyclic if no state
has a sequence of transition that leads back to it. Every transducer has a unique minimal transducer
realizing the same function. The algorithms for testing equivalence, making a transducer connected
and minimizing acyclic transducers carry over from the automata case with the same complexity
bounds.

24

CHAPTER 2

Chapter 2

Free band elements via minimal
transducers

2.1 The word problem in the free band
Recall from Example 1.1.20, that the variety of bands is the collection of all semigroups S satisfying
s2 = s∀s ∈ S. The free band generated by the set A, denoted FB(A), is in some sense the largest
possible band generated by A. It has the property that every other band that is generated by |A|
elements is isomorphic to a quotient of FB(A). Therefore studying the word problem in the free band
can yield important insights into solving the word problem for bands in general.

From Definition 1.1.21 it follows that FB(A) has the infinite presentation ⟨A |s2 = s, ∀ s ∈ A+⟩. We
let β = {(s2, s) : s ∈ A+}♯ be the least congruence determined by the relations of the free band
presentation.

In particular, two words u, v ∈ A+ are equivalent in the free band u ∼β v if and only if there is a
sequence of steps transforming u into v, where each step consists of either replacing a subword s with
s2 (inserting a repetition) or doing the opposite, taking a subword s2 and replacing it with s (removing
a repetition).

In accordance with Definition 1.2.6, the word problem in the free band asks for an algorithm deciding
whether u ∼β v or not.

Example 2.1.1. Consider FB({a, b, c}) and u = ababbcbcbc, v = aabbcc. Then we can show u ∼β v
by rewriting u into v using the repetition insertion and removal steps as described earlier

u = aba(bb)cbcbc

(abab)cbcbc

a(bcbc)bc

a(bcbc)

(a)bc

aa(b)c

aabb(c)

v = aabbcc

Here we have enclosed the subword that we modify at each step with parentheses. And so u ∼β v

The method we used in Example 2.1.1 is quite simple - we first removed all possible repetitions from
the word u until we got the word abc with no repetitions and then started repeating subwords of abc
until we got v. One might try to generalize and ask, does a similar method always work? If it did

25

2.1. THE WORD PROBLEM IN THE FREE BAND CHAPTER 2

work then it would suggest a particularly simple normal form for elements of the free band — one
with all the possible repetitions removed.

Sadly, this naive method doesn’t work, as we can show that u = abcdabdcab, v = abcdcab are equivalent,
however neither of them has a repetition. So in particular, any sequence of transformations taking u
into v must start with the introduction of a repetition, which lengthens u.

To help us tackle this problem we introduce some notation:

Definition 2.1.2. Let w = w1w2 . . . wn ∈ A+ with wi ∈ A for all i, then define the content of w
cont(w) = {wi : i ∈ {1, . . . n}} to be the set of letters occurring in w.

Define pref(w) = w1w2 . . . wj to be the longest prefix of w that has one less unique letter than
w, i.e. such that |cont(w1w2 . . . wj)| = |cont(w)| − 1. With this in mind let ltof(w) = wj+1 to
be the letter immediately after pref(w), where j is as in the previous sentance. We call pref(w)
the prefix of w and ltof(w) the last letter to occur first, since when reading w left to right, every
other letter of cont(w) occurs strictly before ltof(w).

Dually, we define suff(w) = wj . . . wn to be the longest suffix of w such that |cont(wj . . . wn)| =
|cont(w)| − 1. And similarly ftol(w) = wj−1 to be the letter immediately preceding suff(w).
Call suff(w) the suffix of w and ftol(w) the first letter to occur last.

Note that for the single letter word a ∈ A, pref(a) = suff(a) = ε is empty.

Example 2.1.3. Lets calculate these values for w = ababbbcbcbc,

• cont(w) = {a, b, c}.

• pref(w) = ababbb, since cont(ababbb) = {a, b} has one less letter than cont(w), and adding
in the next letter gives the prefix aababbbc, which now has 3 distinct letters.

• ltof(w) = c, since its the next letter after the prefix ababbb in ababbbcbcbc.

• suff(w) = bbbcbcbc.

• ftol(w) = a.

Note that if u ∼β v, then cont(u) = cont(v), since repeating a subword cant introduce a letter that
wasn’t already there, and every letter removed by removing a repetition persists in the part of the
repetition that wasn’t removed. Similarly we can show that cont(pref(u)) and cont(suff(u)) are
invariants, and therefore ltof(u), ftol(u) are also invariants. It turns out that we can go further with
these quantities.

Green and Rees [7] give a very elegant solution to the word problem in the free band in terms of them
with the following theorem, here we present it as it appears in [8]:

Theorem 2.1.4 ([8] Lemma 4.5.1, the Green-Rees theorem). For all v, w ∈ A+, v ∼β w if and
only if all of the following hold:

• cont(v) = cont(w)

• pref(v) ∼β pref(w)

• ltof(v) = ltof(w)

• ftol(v) = ftol(w)

• suff(v) ∼β suff(w)

It may seem that this theorem only makes the word problem worse, since suddenly to figure out if u ∼β

v, we now need to figure out two more equivalences for pref(u) ∼β pref(v) and suff(u) ∼β suff(v).

26

CHAPTER 2 2.1. THE WORD PROBLEM IN THE FREE BAND

However the key insight is that the content of the suffix and prefix are strictly smaller, so eventually
the suffix and prefix will be empty and then out calculation “bottoms-out” so to speak.

We use this idea to derive Algorithm 3.

Algorithm 3: FBEquivalent
Data : u, v ∈ A+

Result : True if u ∼β v, False otherwise
1 if u = v = ε then
2 return True
3 else if cont(u) ̸= cont(v) then
4 return False
5 else if ftol(u) ̸= ftol(v) then
6 return False
7 else if ltof(u) ̸= ltof(v) then
8 return False
9 else if not FBEquivalent(pref(u), pref(v)) then

10 return False
11 else if not FBEquivalent(suff(u), suff(v)) then
12 return False
13 else
14 return True

Theorem 2.1.5. Algorithm 3 is correct and runs in time O
(
2|A| · (|u|+ |v|)

)
.

Proof. Correctness is clear from the Green-Rees theorem.

For the runtime estimate, note that cont(w), pref(w), ltof(w), ftol(w), suff(w) can all be calculated
in time O(n), where n = |w|, by a linear scan through the word w. These then contribute the
O(|u|+ |v|) factor to the time bound.

Furthermore, at every invocation of FBEquivalent, at worst we need to recursively calculate it two
more times for inputs whose content is one less than the original, up until the point where the input has
empty content. This creates a full binary tree of height at most |A|, therefore giving the exponential
part of the bound. △

The Green-Rees theorem can be slightly simplified:

Remark 2.1.6. In fact the condition cont(v) = cont(w) may be dropped from Theorem 2.1.4. △

Proof. To show this all we have to do is show that pref(u) ∼β pref(v), ltof(u) = ltof(v), ftol(u) =
ftol(v) and suff(u) ∼β suff(v) together imply that cont(u) = cont(v).

Well, since pref(u) ∼β pref(v), then cont(pref(u)) = cont(pref(v)). But cont(u) = cont(pref(u))∪
{ltof(u)} = cont(pref(v)) ∪ {ltof(v)} = cont(v). △

We end the section by introducing some abuse of notation: for s ∈ FB(A) we sometimes refer to
cont(s), pref(s), ltof(s), ftol(s), suff(s). Due to the Green-Rees Theorem, if we take any word
w ∈ A+ representing s, then if we define cont(s) = cont(w), ltof(s) = ltof(w), ftol(s) = ftol(w)
and pref(s) = pref(w)/β, suff(s) = suff(w)/β, then these are indeed well defined.

27

2.2. FROM WORDS TO TREES TO TRANSDUCERS AND BACK CHAPTER 2

2.2 From words to trees to transducers and back
We will now adapt the result of the Green-Rees theorem to actually generate a complete invariant for
elements of the free band.

Before we do so, we first define “direction-agnostic” versions of the first to occur last, last to occur
first and prefix, suffix functions.

Definition 2.2.1. Define atob0 = ftol and atob1 = ltof. Similarly, let affx0 = pref and
affx1 = suff.

We can extend the definition of affx to allow subscripts from {0, 1}∗ as follows: let affxε(w) = w
for all w ∈ A+ and for every x ∈ {0, 1}∗, x = x1x2 . . . xn with xk ∈ {0, 1}, define affxx recursively
as

affxx(w) = affxxn(affxx1...xn−1(w))

Similarly, we also extend the definition of atob by

atobx(w) = atobxn(affxx1x2...xn−1(w))

We also define atobε(w) = ⊥ to be undefined. One can note that atobx(w) = atobx(affxε(w))
for x ∈ {0, 1}, so this extension is reasonable.

The extensions of affx and atob essentially allow us to traverse the branches of the recursion in
Algorithm 3 from earlier, and the binary string x enumerates the branch we take.

Once we “bottom out” in the recursive algorithm when applying the Green-Rees theorem recursively,
we are left with a collection of equalities that were tested, and these equalities are necessarily a
complete invariant. The extended versions of affx and atob will help us formalize this invariant as
follows:

Definition 2.2.2. Let w ∈ A+, k = |cont(w)|. We define gw : {0, 1}k → Ak by

gw(x1x2 . . . xk) = atobx1(w)atobx1x2(w)atobx1x2x3(w) · · · atobx1x2...xk
(w)

Theorem 2.2.3. Let u, v ∈ A+, then u ∼β v if and only if gu = gv.

Proof. First we show some small technical properties of atob, affx and g. Note that for n ≥ 1,
x = x1x2 . . . xn ∈ {0, 1}+ and w ∈ A+,

affxx(w) = affxxn(affxx1x2...xn−1(w)) =

=affxxn(affxxn−1(. . . (affxx1(w)) . . .)) = affxx2x3...xn(affxx1(w))

Therefore if n ≥ 2,

atobx(w) = atobxn(affxx1...xn−1(w)) =

=atobxn(affxx2x3...xn−1(affxx1(w))) = atobx2...xn (affxx1(w))

And so we have that

gw(x1 . . . xk) = atobx1(w)atobx1x2(w) . . . atobx1x2...xk
(w) =

=atobx1(w)atobx2(affxx1(w)) . . . atobx2...xk
(affxx1(w)) = atobx1(w)gaffxx1 (w)(x2 . . . xk)

We now prove the statement by induction on |cont(u)|. Clearly if |cont(u)| ̸= |cont(v)|, then u ̸∼β v
by the Green-Rees theorem, and gu ̸= gv since they have different domains. So we assume that
|cont(u)| = |cont(v)| for the rest of the proof.

28

CHAPTER 2 2.2. FROM WORDS TO TREES TO TRANSDUCERS AND BACK

As an inductive base, if |cont(u)| = |cont(v)| = 1, then affxx(u) = affxx(v) = ε for all x ∈ {0, 1},
atob0(u) = atob1(u) and atob0(v) = atob1(v) so, from the Green-Rees theorem, u ∼β v if and only
if atob0(u) = atob0(v).

Furthermore, if |cont(w)| = 1, then gw is defined by gw(0) = atob0(w), gw(1) = atob1(w), and
atob0(w) = atob1(w) if |cont(w)| = 1. So gu = gv if and only if atob0(u) = atob0(v). This
establishes the base case.

Now assume that we have shown that the statement holds for all u, v with |cont(u)|, |cont(v)| < k.
Then for u, v with |cont(u)| = |cont(v)| = k, by Green-Rees theorem we have that u ∼β v if and
only if atobx(u) = atobx(v) and affxx(u) ∼β affxx(v) for all x ∈ {0, 1} (note that we dropped the
condition cont(u) = cont(v) as per Remark 2.1.6).

On the other hand, we know that gw(x1 . . . xk) = atobx1(w)gaffxx1 (w)(x2 . . . xk). Therefore gu = gv
if and only if atobx1(u) = atobx1(v) and gaffxx1 (u)(x2 . . . xk) = gaffxx1 (v)(x2 . . . xk) for all x1, . . . xk ∈
{0, 1}. But this condition is equivalent to atobx(u) = atobx(v) and gaffxx(u) = gaffxx(v) for all
x ∈ {0, 1}. But now, from the inductive hypothesis, since affxx(u), affxx(v) have strictly smaller
content than u and v, then it follows that gaffxx(u) = gaffxx(v) if and only if affxx(u) ∼β affxx(v).
But then putting it all back together we get that gu = gv if and only if atobx(u) = atobx(v) and
affxx(u) ∼β affxx(v) for all x ∈ {0, 1}.

This completes the induction and therefore the proof. △

As it turns out, gw can be realized by a deterministic acyclic synchronous transducer.

For this we introduce the following notation: for a set X and integer k, let X≤k = {x ∈ X∗ : |x| ≤ k}
denote the set of all word over X of length no more than k.

With this in mind, we construct gives a transducer computing gw which is in some sense “tree-
like”:

Definition 2.2.4. Given w ∈ A+, let k = |cont(w)| and define Gw = (Q,Σ,Γ, q0, T, ◦, ∗) be a
transducer with Q = {0, 1}≤k, Σ = {0, 1}, Γ = A, q0 = ε, T = {0, 1}k and state and letter
transition functions given respectively by:

q ◦ x = qx q ∗ x = atobx(affxq(w))

Theorem 2.2.5. For all w ∈ A+, the function realized by Gw is exactly gw. Furthermore, w ∼β v
if and only if Gw, Gv are isomorphic as transducers.

Proof. Note that the only path from the initial state q0 = ε to a terminal state x = x1x2 . . . xk ∈ {0, 1}k
is by following the transition labeled by x1 from ε to x1, then the one labeled x2 from x1 to x1x2, and
so on until we follow the transition labeled xk to x1x2 . . . xk. The word emitted by these transitions is

ε ∗ x1 · x1 ∗ x2 · x1x2 ∗ x3 . . . x1x2 . . . xk−1 ∗ xk =

=atobx1(affxε(w))atobx2(affxx1(w)) . . . atobxk
(affxx1...xk−1

) =

=atobx1(w)atobx1x2(w) . . . atobx1...xk
(w) = gw(x1 . . . xk)

This completes the proof. △

Therefore Gw is also a complete invariant for the word problem in the free band. By abuse of notation
we will also sometimes talk about gs, Gs for s ∈ FB(A), where in this case gs = gw, Gs = Gw for some
word representative w ∈ A+ of s.

29

2.2. FROM WORDS TO TREES TO TRANSDUCERS AND BACK CHAPTER 2

Example 2.2.6. Consider the word w = ababbbcbcbc as before. We will not write out gw in full
here, but as an example we can see that gw(000) = cba, gw(010) = cab, gw(111) = abc.

The transducer we get is isomorphic to the following, where we choose the state labels to be the
corresponding affixes of the word, and the edges are colored depending on the output letter:

ababbbcbcbc

ababbb bbbcbcbc

a bbb bbb c

ε ε ε ε ε ε ε ε

0/c 1/a

0/b 1/a 0/c 1/b

0/a 1/a 0/b 1/b 0/b 1/b 0/c 1/c

We now seek a reverse process — turning a transducer representing a free band element into a word
representative:

Definition 2.2.7. Given a transducer T = (Q,Σ,Γ, q0, T, ◦, ∗) and a state q ∈ Q, define the
q-flatted transducer word wordT (q) to be

wordT (q) =

{
ε if q ∈ T

wordT (q ◦ 0) · (q ∗ 0) · (q ∗ 1) · wordT (q ◦ 1)

Theorem 2.2.8. For all s ∈ FB(A), if T is a transducer with start state q0 realizing gs, then
wordT (q0) is a word representative of s.

Proof. We proceed by induction on |cont(s)|.

If |cont(s)| = 1, then q0 ◦ 0, q0 ◦ 1 ∈ T , since it realizes gs : {0, 1} → A. Therefore wordT (q0) =
q0 ∗ 0 · q0 ∗ 1. But we know that q0 ◦ 0 = gs(0) = atob0(s) = atob1(s) = gs(1) = q1 ◦ 1, so indeed
wordT (q0) = atob0(s)2 is a word representative for s.

Now assume the statement hold for all s ∈ FB(A) with content strictly less than k. Then for s ∈ FB(A)
with |cont(s)| = k we have that gs(x1 . . . xk) = atobx1(s)gaffxx1 (s)(x2 . . . xk), therefore q0 ∗ x1 =
atobx1(s), since this is the first letter for all inputs starting with x1.

Furthermore, by the same reasoning we can show that the function realized by T with initial vertex
at q0 ◦ x1 must be gaffxx1 . But then by the inductive hypothesis, since affxx1(s) has strictly smaller
content, we get that wordT (q0 ◦ x1) is a representative of affxx1(s).

Putting this all together, we get that atobx(wordT (q0)) = q0 ∗ x = atobx(s), and affxx(wordT) =
wordT (q0 ◦ x) = affxx(s). So by the Green-Rees theorem, wordT (q0) is indeed a word representative
for s. △

Example 2.2.9. Consider the transducer T from Example 2.2.6, then the flattening of this trans-

30

CHAPTER 2 2.3. MINIMAL TRANSDUCERS ARE SMALL

ducer we get

wordT (q0) = wordT (q0 ◦ 0) · ca · wordT (q0 ◦ 0) =
=wordT (q0 ◦ 01) · ba · wordT (q0 ◦ 01) · ca · wordT (q0 ◦ 10) · cb · wordT (q0 ◦ 11) = aababbcabbcbcc

2.3 Minimal transducers are small
Note that in the previous section we constructed for each element of the free band a complete invariant
in the form of a tree-like transducer. This transducer is rather large, however, — it has 2|A|+1 − 1
states regardless of the element s ∈ FB(A) that its representing. In comparison to representing
elements of FB(A) by words in A+, this can sometimes be an exponential blowup, for example if
A = {a1, a2, . . . , an}, then the word a1a2 . . . an is a size |A| word representative of its equivalence
class, yet its transducer has 2|A|+1 − 1 states.

However, recall that transducers can be minimized, and for every transducer there exists a unique
minimal transducer computing the same function. Since every s ∈ FB(A) is uniquely determined by
gs, and there exists a unique minimal transducer Ms computing gs, then the minimal transducer is
also easily seen to be a complete invariant for s.

The main motivation for studying the transducer representation comes from the following theo-
rem:

Theorem 2.3.1 (Main theorem). Let s ∈ FB(A) and w be the shortest word representing s.
Then Ms, the minimal transducer computing gs, has no more than |w| · (|A|+ 1) states.

Theorem 2.3.1 is great news since, as far as we know, there is no efficient way of computing a shortest
word representative of an element of the free band, but as we know, the minimal transducer can
be computed in linear time proportional to the number of transitions (since the input alphabet is
fixed to {0, 1} in our case, then this means we can minimize in time proportional to the number of
states).

Before we prove Theorem 2.3.1 we will establish a method of extending a transducer representing
s ∈ FB(A) into a transducer representing sa for some a ∈ A. This will then give us a method of
building up a transducer “letter by letter”, which is crucial in establishing the state bound.

The following Lemma gives us an idea of how the important parameters of s change when we right
multiply it by a generator:

Lemma 2.3.2. Let s ∈ FB(A) and a ∈ A, then

pref(sa) =

{
s if a ̸∈ cont(s)
pref(s) otherwise

ltof(sa) =

{
a if a ̸∈ cont(s)
ltof(s) otherwise

suff(sa) =

{
suff2(s)a if a = ftol(s)
suff(s)a otherwise

ftol(sa) =

{
ftol(suff(s)) if a = ftol(s)
ftol(s) otherwise

Proof. Note that it suffice to prove the theorem for a single word representative of s. Let w ∈ A+ be
a word representative for s.

31

2.3. MINIMAL TRANSDUCERS ARE SMALL CHAPTER 2

We proceed by casework. First we consider pref and ltof:

• If a ̸∈ cont(w), then |cont(w)| = |cont(wa)|−1, furthermore clearly w is the longest such prefix
of wa. Therefore pref(wa) = w, and consequently ltof(wa) = a

• If a ∈ cont(w), then |cont(wa)| = |cont(w)| = |cont(pref(w))|+1, and pref(w) is also a prefix
of wa. Furthermore, pref(w) must be the longest such prefix in wa, since otherwise we can find a
longer prefix in w, a contradiction. So pref(wa) = pref(w) and therefore ltof(wa) = ltof(w).

Now consider suff and ftol:

• If a = ftol(w), then cont(suff(w)a) = cont(suff(w)) ∪ {a} = cont(suff(w)) ∪ {ftol(w)} =
cont(w) = cont(wa). But then, note that |cont(suff2(w)a)| = |cont(w)| − 1 = |cont(wa)− 1|,
and suff2(w)a is a suffix of wa. Furthermore, it must be the longest such suffix. Otherwise,
we could find a suffix longer than suff2(w) with size of content equal to |cont(w)| − 2 =
|cont(suff(w))| − 1, but this contradicts the maximality of suff2(w) as the suffix of suff(w).
Therefore suff(wa) = suff2(s)a, and therefore it follows that ftol(wa) = ftol(suff(w)).

• If a ̸= ftol(w), then ftol(w) ̸∈ cont(suff(w)a), as ftol(w) ̸∈ cont(suff(w)) by definition.
Therefore |cont(suff(w)a)| = |cont(wa)| − 1, and suff(w)a is a suffix of wa. Furthermore it is
the largest such suffix as otherwise we could find a larger suffix of w by removing the final letter
a. So suff(wa) = suff(w)a which means that ftol(wa) = ftol(w).

△

We now use the above lemma in a constructive manner, to modify a transducer realizing gw into
a transducer realizing gwa. This happens by adding a vertical strip of states and linking them to
previous states in a specific manner that mirrors the properties of wa given in Lemma 2.3.2.

Definition 2.3.3. Let s ∈ FB(A) with |cont(s)| = k, T = (Q, {0, 1}, A, q0, T, ◦1, ∗1) be a trans-
ducer realizing gs and a ∈ A be any generator.

Then the right-action of a on T is defined as the transducer T a = (Q ∪R, {0, 1}, A, r0, T, ◦2, ∗2),
where R = {r0, r1, . . . , rk} if a ̸∈ cont(s) and R = {r0, r1, . . . , rk−1} otherwise. For convenience,
let qi = q0 ◦1 1i for all i ∈ {1, . . . , k} (note that qk is then a terminal state).

We define ◦2, ∗2 to act on Q in the same way that ◦1, ∗1 do, i.e. ∀ q ∈ Q, x ∈ {0, 1}, we let
q ◦2 x = q ◦1 x, q ∗1 x = q ∗2 x.

Now we consider two cases:

• If a ̸∈ cont(s), then let rk ◦2x = qk lead to a terminal state, and rk ∗2x = a for all x ∈ {0, 1}.
For i ∈ {0, . . . , k − 1} define

ri ◦2 0 = qi ri ◦2 1 = ri+1

ri ∗2 0 = a ri ∗2 1 = qi ∗1 1

• If a ∈ cont(s), then let rk−1 ◦2 x = qk−1 lead to a terminal state, and rk−1 ∗2 x = a for all
x ∈ {0, 1}.

Let j be such that qj ∗1 1 = a (as a ∈ cont(s), and T realizes gs, such a j must exist and
furthermore is unique). For i ∈ {0, . . . , j − 1} define

ri ◦2 0 = qi ◦1 0 ri ◦2 1 = ri+1

ri ∗2 0 = qi ∗1 0 ri ∗2 1 = qi ∗1 1

32

CHAPTER 2 2.3. MINIMAL TRANSDUCERS ARE SMALL

For i = j define

rj ◦2 0 = qj ◦1 0 rj ◦2 1 = rj+1

rj ∗2 0 = qj ∗1 0 rj ∗2 1 = qj+1 ∗1 1

For i ∈ {j + 1, . . . , k − 2} define

ri ◦2 0 = qi+1 ri ◦2 1 = ri+1

ri ∗2 0 = a ri ∗2 1 = qi+1 ∗1 1

Theorem 2.3.4. Let s ∈ FB(A), T and a ∈ A be as in Definition 2.3.3. Then T a realizes gsa.

Proof. The proof proceeds by establishing that the induced subtransducer of T a rooted at ri (that is,
the transducer T a with initial state changed to be equal to ri instead) realizes the function gsuffi(wa),
where suff0(wa) = wa.

Before we do so, note that the induced subtransducer of T rooted at qi realizes the function gsuffi(w),
this is immediate since we showed that gw(x1 . . . xk) = atobx1gaffxx1 (w)(x2 . . . xk) in the proof of
Theorem 2.2.3.

We now proceed by induction.

Consider two cases:

• a ̸∈ cont(w). Then also a ̸∈ cont(suffi(w)) for all i ∈ {0, . . . , k}, and a ̸= ftol(suffi(w)) for all
i ∈ {0, . . . , k−1}. Therefore from Lemma 2.3.2 it follows that suffi(wa) = suffi−1(suff(wa)) =
suffi−1(suff(w)a) = · · · = suffi(w)a for all i ∈ {0, . . . , k}.

For our inductive base we consider i = k. In this case, we can see that suffk(w)a = εa = a.
And we have that rk ◦2 x = qk which is a terminal state, and rk ∗2 x = a for all x ∈ {0, 1}, so
the function realized by the induced subtransducer is indeed ga.

Now assume that the statement holds for all values strictly larger than i, i.e. that the subtrans-
ducer at rl realizes gsuffl(wa) for all l > i.

Then by applying the Lemma again we have that

– pref(suffi(w)a) = suffi(w)

– ltof(suffi(w)a) = a

– suff(suffi(w)a) = suffi+1(w)a

– ftol(suffi(w)a) = ftol(suffi(w))

but now note that ri ∗2 0 = a = ltof(suffi(w)a), ri ∗2 1 = qi ∗1 1 = ftol(suffi(w)) since qi
realizes suffi(w). Furthermore ri ◦2 0 = qi, and ri ◦2 1 = ri+1, which according to the inductive
hypothesis induces gsuffi+1(wa). But then if f is the function realized by the subtransducer tooted
at ri, by putting this all together we get that

f(0xi+1 . . . xk) = agsuffi(w)(xi+1 . . . xk) = gsuffi(w)a(0xi+1 . . . xk) = gsuffi(wa)(0xi+1 . . . xk)

f(1xi+1 . . . xk) = ftol(suffi(w))gsuffi+1(wa)(xi+1 . . . xk) = gsuffi(wa)(1xi+1 . . . xn)

For all xi+1, . . . , xn ∈ {0, 1}. But then f = gsuffi(wa) as required.

This establishes the induction and so the induced subtransducer rooted at r0, which is simply
the whole of T a, realizes the function gsuff0(wa) = gwa as required.

33

2.3. MINIMAL TRANSDUCERS ARE SMALL CHAPTER 2

• a ∈ cont(w). By using the lemma we can show that suffi(wa) = suffi(w)a for i ∈ {0, . . . j}
and suffi(wa) = suffi+1(w)a for i ∈ {j + 1, . . . , k − 1}.

We note that for i ∈ {j + 1, k − 1}, we have that a ̸∈ suffi(w), since rj ∗2 1 = a implies that
ftol(suffj(w)) = a, so clearly a ̸∈ suffj+1(w).

But this means that we can use the proof of the previous case a ̸∈ cont(w) above to show that
the subtransducer rooted at ri realizes the function gsuffi(wa) for all i ∈ {j + 1, . . . , k − 1}.

Now consider rj . Then since a = ftol(suffj(w)), the Lemma tells us that

– pref(suffj(w)a) = pref(suffj(w))

– ltof(suffj(w)a) = ltof(suffj(w))

– suff(suffj(w)a) = suff2(suffj(w))a = suffj+2(w)a = suffj+1(wa)

– ftol(suffj(w)a) = ftol(suff(suffj(w))) = ftol(suffj+1(wa))

But now note that rj ∗2 0 = qj ∗1 0 = ltof(suffj(w)), rj ∗2 1 = qj+1 ∗1 1 = ftol(suffj+1(wa)).
Further, rj ◦2 0 = qj ◦1 0 and qj ◦1 0 realizes gpref(suffj(w)) by assumption. Finally, rj ◦2 1 = rj+1

and as we just showed, rj+1 realizes gsuffj+1(wa). And so in the same manner as before we
establish that the subtransducer rooted at rj realizes gsuffj(wa).

Finally, we establish i ∈ {0, . . . , j − 1} by reverse induction. rj serves as the inductive base. We
assume that the statement holds for all values larger than i.

Note now that by the Lemma

– pref(suffi(w)a) = pref(suffi(w))

– ltof(suffi(w)a) = ltof(suffi(w))

– suff(suffi(w)a) = suff(suffi(w))a = suffi+1(w)a = suffi+1(wa)

– ftol(suffi(w)a) = ftol(suffi(w))

But then, since ri∗20 = qi∗10 = ltof(suffi(w)) and ri∗21 = qi∗11 = ftol(suffi(w)). Similarly,
ri◦20 = qi◦10, and by assumption qi◦10 realizes gpref(suffi(w)). Finally ri◦21 = ri+1, and by the
inductive assumption ri+1 realizes gsuffi+1(wa). Therefore we establish that the subtransducer
rooted at ri realizes gsuffi(wa) as required.

This finishes the induction.

△

Proof of Theorem 2.3.1. For a ∈ A define the transducer Sa to be as below

1 2
0, 1/a

It is easy to see that Sa realizes ga.

Now for w = w1 . . . wn ∈ A+, consider the transducer gained by repeatedly applying the right action
of A to Sw1 , i.e. the transducer U = (. . . ((Sw1w2)w3) . . .)wn. It realizes gw1w2...wn = gw by repeated
application of Theorem 2.3.4.

But note that for an arbitrary transducer T realizing gu for some u ∈ A+, the number of states of
T a is related to the number of states of T by the inequality |T a| ≤ |T |+ |A|+ 1 by the construction
given in Definition 2.3.3, since we introduce at most |cont(u)|+ 1 new states.

Therefore U has at most |w| · (|A|+ 1) states. But now note that for any x ∈ FB(A), gx = gw for any
word representative w. Therefore we may pick w to be the shortest possible word representative of

34

CHAPTER 2 2.4. HOW TO BUILD A MINIMAL TRANSDUCER

x. Then the bound implies that there is a transducer realizing gx with no more than |w| · (|A| + 1)
states, and so clearly the minimal transducer realizing gx will have no more than |w| · (|A|+ 1) states
as required. △

Example 2.3.5. This example applies the construction in the proof of Theorem 2.3.1 to construct a
small transducer for the free band element given by the word w = abbac. We color the transitions
depending on the output symbols for, and omit the edge labels in later drawings for visual clarity.

The various stages of the construction, starting with Sa, then Sab, (Sab)b, ((Sab)b)a and finally
(((Sab)b)a)c are drawn below:

Sa = 1

2

0, 1/a

Sab = 1

2

3

4

0, 1/a

1/a

0, 1/b

0/b

(Sab)b = 1

2

3

4

5

6

0, 1/a

1/a

0, 1/b

0/b 1/a

0/b

0, 1/b

((Sab)b)a = 1

2

3

4

5

6

7

8

(((Sab)b)a)c = 1

2

3

4

5

6

7

8

9

10

11

2.4 How to build a minimal transducer
In the previous sections, for each word w ∈ A+ we defined a complete invariant function gw and then
gave an exponential size transducer Gw realizing gw. We then argued how the minimal transducer
Mw realizing gw has a size bounded by N(|A|+ 1) where N is the length of the shortest word in that
is equivalent to w. Now we wish to actually construct such a minimal transducer.

One approach we could envision would be to construct Gw and then apply a transducer minimization

35

2.4. HOW TO BUILD A MINIMAL TRANSDUCER CHAPTER 2

algorithm, but this effort take at least O
(
2|A||w|

)
time to even construct Gw due to the exponential

nature of the transducer and the cost of computing affx and atob.

As it turns out we can do better.

2.4.1 The vertical method
Recall that the proof of Theorem 2.3.1 was constructive, and gave us a way of constructing a transducer
realizing gw with at most |w|(|A|+1) states. It is not hard to actually turn the proof into an algorithm
that works in time and space O(|w| · |A|) to compute a transducer realizing gw.

But now, since our input alphabet is fixed to be {0, 1}, then the number of transitions is proportional
to the number of states, therefore, if we apply the Revuz minimization algorithm to this transducer,
we get a minimal transducer in time and space O(|w| · (|A|+ 1)) = O(|w| · |A|).

This algorithm proceeds by adding each letter one by one using the right action of A on transducers
defined in Definition 2.3.3. Upon doing so, we add a “vertical slice” from an initial state to a terminal
state. Hence we call this the vertical method.

Once we have a minimal transducer solving the word problem is easy, since the minimal transducer
is a complete invariant, it suffice to just test transducer isomorphism which can be done in time and
space linear in the number of states.

So in total for alphabet A and words u, v ∈ A+, to decide u ∼β v we need O(|A| · (|u|+ |v|)) time and
space to compute transducers realizing gu, gv via the vertical method, then we need O(|A| · (|u|+ |v|))
time and space to minimize them and finally O(n1 + n2) time and space to test isomorphism of
transducers, where n1 and n2 are the number of states of the minimal transducers.

2.4.2 The horizontal method of [12]
In [12] the authors derive an algorithm which uses O(|A| · (|u| + |v|)) time and O(|u| + |v|) space to
decide if u ∼β v. We will now show how their algorithm fits into our framework and gives us a different
method of generating minimal transducers.

First we introduce some notation and describe the general idea of the algorithm.

Definition 2.4.1. For x ∈ FB(A), a transducer T = (Q, {0, 1}, A, q0, T, ◦, ∗) realizing gx and a
state q ∈ Q, define the content of q as the set

cont(q) =
{
r ∗ t : t ∈ {0, 1}, r ∈ Q s.t. r is reachable from q

}
In other words it is the set of all output symbols along every path from q to an accepting state.

Then the k-th layer of T is defined to be Ik = {q ∈ Q : |cont(q)| = k, q is reachable from q0}.

Remark 2.4.2. It is not hard to see that the set of all states reachable from q0 is
⋃|A|

k=0 Ik. Furthermore
if q ∈ Ik, then q ◦ t ∈ Ik−1 for all t ∈ {0, 1}. △

So each layer consists of states with a fixed size of content, and the k-th layer only has state transitions
into the k − 1-st layer, therefore justifying the idea of these being layers of the automaton.

The basic idea of the algorithm of Radoszewski and Rytter can then be expressed as follows:

• To test if u ∼β v construct the minimal transducer of each and compare them as transducers.

• To construct the minimal transducer of a word w, we will build it up layer by layer starting from
I0.

• At the k-th step, assume we have access to a collection of states consisting of Ik and some
unreachable states.

36

CHAPTER 2 2.4. HOW TO BUILD A MINIMAL TRANSDUCER

• Then to build Ik+1, we perform a linear scan across the word and add in one state for every
subword of w containing k+1 distinct letters, that is maximal in this respect in a concrete way
defined in the paper.

• We can then add transitions from every subword in Ik+1 to its prefix and suffix in Ik.

• Then we union together equivalent states of this layer. The result is a set of states containing
Ik+1 and some unreachable states. Since the previous layer was minimized in the previous step,
this can be done very efficiently.

• After the last layer is made, identify the initial state q0 and perform a traversal from it to identify
all reachable states.

• Now create a new transducer consisting only of the reachable states. This is the minimal trans-
ducer for u.

Note that in [12] the minimal transducer construction is not the main goal, and it is only constructed
implicitly. In particular unreachable states do not get removed, and at each point only the current
and previous layers are kept. This is done to reduce space complexity.

In essence, Radoszewski and Rytter come up with a method of constructing a transducer realizing gw
with O(|A| · |w|) states. They do this in a horizontal manner by efficiently building up a layer of the
transducer at every step. These layers are exactly the same layers as the ones in Revuz minimization.
They then interleave Revuz minimization steps with layer construction steps, allowing them to avoid
storing the full transducers and rather only store one layer of the transducer at a time. This allows
them to keep the space complexity to only O(|u|+ |v|).

37

CONCLUSIONS AND FURTHER WORK

Conclusions and further work

In this work we have exhibited a novel way of representing elements in the free band by minimal acyclic
transducers. We show that the minimal transducer for an element x ∈ FB(A) have size proportional
to N · |A| where N is the length of the smallest word representative of x. Furthermore, since the best
know algorithm for solving the word problem fits neatly as an instance of our transducer representa-
tion, we believe that there is potential in exploring the computational aspects of our representation
further.

In terms of future work, we believe that we are able to use our minimal acyclic transducer framework
introduced in this paper to show the following conjectures. To paraphrase Fermat, “we have discovered
a truly remarkable proof of these conjectures which this masters project is too small to contain.”

Conjecture 2.4.3. Let A be an alphabet and s, t ∈ FB(A) and Ms,Mt be the minimal transducers
for s and t respectively.

Then it is possible to compute Mst the minimal transducer for the product st in time and space
O
(
|Ms|+ |Mt|+ |A|2

)
, where |Ms|, |Mt| is the number of states of each minimal transducer.

In particular, by Theorem 2.3.1, it follows that the time and space is O (|A| · (Nt +Ns + |A|)),
where Nt, Ns are the lengths of the minimal word representatives for t and s respectively.

This would equip the set of minimal transducers with a multiplication that makes them isomorphic
to the free band. This has interesting theoretical implications too, and as a further goal we could
study extensions of the transducer multiplication to the set of all transducers (as the current minimal
transducers are very constrained). This could be beneficial in solving the word problem in arbitrary
finitely presented bands.

Furthermore, a subvariety W of a variety V is a proper subclass of V that is a variety in its own
right. The lattice of subvarieties of bands is well studied and characterized, for example see [10]. A
relatively free band is the free object in a subvariety of bands. We believe that using our framework,
the horizontal method of Radoszewski and Rytter can be unified with the solution to the word problem
in relatively free bands by Petrich [10] to yield the following conjecture:

Conjecture 2.4.4. Let A be and alphabet, W be a subvariety of the variety of bands, FW(A) be
the free object generated by A in this variety.

Then the word problem in FW(A) for word u, v ∈ A+ can be solved in O
(
|A|2 · (|u|+ |v|)

)
time

and space.

Neither of the two problems are currently known to be solvable in subexponential time. We intend to
prove these theorems in a subsequent publication.

An even further topic of interest would be that of finitely presented bands. That is, it would be
interesting to apply our framework to the word problem in finite quotients of the free band, and see
what sort of computational complexity we can achieve.

38

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] A. M. Ballantyne and D. S. Lankford. “New decision algorithms for finitely presented commuta-
tive semigroups”. In: Computers & Mathematics with Applications 7.2 (1981), pp. 159–165. issn:
0898-1221. doi: 10.1016/0898-1221(81)90115-2.

[2] Jean Berstel et al. Minimization of Automata. 2010. arXiv: 1010.5318 [cs.FL].
[3] J. Bubenzer. “Cycle-aware minimization of acyclic deterministic finite-state automata”. In: Dis-

crete Applied Mathematics 163 (2014). Stringology Algorithms, pp. 238–246. issn: 0166-218X.
doi: 10.1016/j.dam.2013.08.003.

[4] A. J. Cain. Nine Chapters on the Semigroup Art. 2020. url: http://www-groups.mcs.st-
andrews.ac.uk/~alanc/pub/c_semigroups/index.html.

[5] A. Church. “An Unsolvable Problem of Elementary Number Theory”. In: American Journal of
Mathematics 58.2 (1936), pp. 345–363.

[6] J. Daciuk et al. “Incremental construction of minimal acyclic finite-state automata”. In: Com-
putational linguistics 26.1 (2000), pp. 3–16.

[7] J. A. Green and D. Rees. “On semi-groups in which xr = x”. In: Mathematical Proceedings of
the Cambridge Philosophical Society 48.1 (1952), pp. 35–40. doi: 10.1017/S0305004100027341.

[8] J.M. Howie. Fundamentals of Semigroup Theory. LMS monographs. Clarendon Press, 1995. isbn:
9780198511946.

[9] G. S. Makanin. “On the identity problem in finitely defined semigroups”. In: Dokl. Akad. Nauk
SSSR 171 (1966), pp. 285–287. issn: 0002-3264.

[10] M. Petrich and P. V. Silva. “Structure of Relatively Free Bands”. In: Communications in Algebra
30.9 (2002), pp. 4165–4187. doi: 10.1081/AGB-120013311.

[11] E. L. Post. “Recursive Unsolvability of a Problem of Thue”. In: The Journal of Symbolic Logic
12.1 (1947), pp. 1–11. issn: 00224812.

[12] J. Radoszewski and W. Rytter. “Efficient Testing of Equivalence of Words in a Free Idempotent
Semigroup”. In: SOFSEM 2010: Theory and Practice of Computer Science. Jan. 2010, pp. 663–
671. doi: 10.1007/978-3-642-11266-9_55.

[13] D. Revuz. “Minimisation of acyclic deterministic automata in linear time”. In: Theoretical Com-
puter Science 92.1 (1992), pp. 181–189. issn: 0304-3975. doi: 10.1016/0304-3975(92)90142-3.

[14] M. Sipser. Introduction to the Theory of Computation. Second. Course Technology, 2006.
[15] A. M. Turing. “On Computable Numbers, with an Application to the Entscheidungsproblem”.

In: Proceedings of the London Mathematical Society s2-42.1 (1937), pp. 230–265. doi: https:
//doi.org/10.1112/plms/s2-42.1.230.

39

https://doi.org/10.1016/0898-1221(81)90115-2
https://arxiv.org/abs/1010.5318
https://doi.org/10.1016/j.dam.2013.08.003
http://www-groups.mcs.st-andrews.ac.uk/~alanc/pub/c_semigroups/index.html
http://www-groups.mcs.st-andrews.ac.uk/~alanc/pub/c_semigroups/index.html
https://doi.org/10.1017/S0305004100027341
https://doi.org/10.1081/AGB-120013311
https://doi.org/10.1007/978-3-642-11266-9_55
https://doi.org/10.1016/0304-3975(92)90142-3
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230

	Title page
	Abstract
	Contents
	Introduction
	Preliminaries
	Semigroups
	Elementary semigroup theory
	Varieties of semigroups

	Computation
	A quick overview of the theory of computation
	The word problem in semigroups
	Computational complexity
	Normal forms and complete invariants

	Automata and transducers
	Automata basics
	Acyclic automata
	Transducers

	Free band elements via minimal transducers
	The word problem in the free band
	From words to trees to transducers and back
	Minimal transducers are small
	How to build a minimal transducer
	The vertical method
	The horizontal method of radoszewskirytter

	Conclusions and further work
	Bibliography

