Computing Finite Index Congruences

Reinis Cirpons

University of St Andrews

<ロ> (四) (四) (三) (三) (三)

æ

Marina Anagnostopoulou-Merkouri, R. C, James D. Mitchell, and Maria Tsalakou (2024). Computing finite index congruences of finitely presented semigroups and monoids. arXiv: 2302.06295 [math.RA]

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Word problem

Given a monoid M generated by A and generators $a_i, b_j \in A$, does $a_1 \cdot a_2 \cdot \ldots \cdot a_n = b_1 \cdot b_2 \cdot \ldots \cdot b_m$ hold?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Triviality problem

Given a monoid M, is |M| = 1?

Isomorphism problem

Given two monoids M, N is $M \cong N$?

Theorem

If M is a finite monoid, then the following are all decidable:

- Word problem,
- Triviality problem,
- Isomorphism problem^a.

^aWhen both monoids are finite.

Let $M = \langle A, B \rangle$ where

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Is $B \cdot A = A \cdot A \cdot B$?

$$B = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 の < @

Is $B \cdot A = A \cdot A \cdot B$?

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Is $B \cdot A = A \cdot A \cdot B$? Yes!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

Let *M* be the monoid presented by $\langle a, b \mid ab = ba \rangle$. Then

 $abba =_M baba =_M baab.$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?

Furthermore $M \cong \mathbb{N} \times \mathbb{N}$

Example

Let *M* be the monoid presented by $\langle a, b \mid ab = ba \rangle$. Then

 $abba =_M baba =_M baab.$

<ロ> (四) (四) (三) (三) (三)

Furthermore $M \cong \mathbb{N} \times \mathbb{N}$

Theorem

The following are all undecidable for the class of f.p. monoids:

- Word problem (Markov 1947; Post 1947),
- Triviality problem (Markov 1951),
- Isomorphism problem (Markov 1951).

Consider the right Cayley graph of $\langle a, b \mid ba = a^2b \rangle$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

Let M be a monoid. A congruence on M is an equivalence relation $\rho \subseteq M \times M$ such that

$$(x, y) \in \rho \Rightarrow (xs, ys) \in \rho \text{ and } (sx, sy) \in \rho \ \forall s \in M.$$

The set of equivalence classes of ρ form the quotient monoid M/ρ . There exists a unique surjective homomorphism $\varphi: M \to M/\rho$. The index of ρ is $|M/\rho|$.

《曰》 《聞》 《臣》 《臣》 三臣 …

Definition

Let M be a monoid. A congruence on M is an equivalence relation $\rho \subseteq M \times M$ such that

$$(x, y) \in \rho \Rightarrow (xs, ys) \in \rho \text{ and } (sx, sy) \in \rho \ \forall s \in M.$$

The set of equivalence classes of ρ form the quotient monoid M/ρ . There exists a unique surjective homomorphism $\varphi: M \to M/\rho$. The index of ρ is $|M/\rho|$.

Let M, ρ and $\varphi: M \to M/\rho$ be as above.

- If $\varphi(a_1) \cdot \ldots \cdot \varphi(a_n) \neq \varphi(b_1) \cdot \ldots \cdot \varphi(b_m)$, then $a_1 \cdot \ldots \cdot a_n \neq b_1 \cdot \ldots \cdot b_m$.
- If M/ρ is nontrivial, then so is M.
- If N does not admit an index $|M/\rho|$ congruence σ such that $M/\rho \cong N/\sigma$, then $M \not\cong N$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Definition

Let M be a monoid. A congruence on M is an equivalence relation $\rho \subseteq M \times M$ such that

$$(x,y) \in \rho \Rightarrow (xs, ys) \in \rho \text{ and } (sx, sy) \in \rho \ \forall s \in M.$$

The set of equivalence classes of ρ form the quotient monoid M/ρ . There exists a unique surjective homomorphism $\varphi: M \to M/\rho$. The index of ρ is $|M/\rho|$.

Let M, ρ and $\varphi: M \to M/\rho$ be as above.

- If $\varphi(a_1) \cdot \ldots \cdot \varphi(a_n) \neq \varphi(b_1) \cdot \ldots \cdot \varphi(b_m)$, then $a_1 \cdot \ldots \cdot a_n \neq b_1 \cdot \ldots \cdot b_m$.
- If M/ρ is nontrivial, then so is M.
- If N does not admit an index $|M/\rho|$ congruence σ such that $M/\rho \cong N/\sigma$, then $M \not\cong N$.

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

Theorem

Any k-generated monoid has at most n^{nk} distinct congruences of index n.

Let *M* be presented by $\langle a, b | ba = a^2 b \rangle$. Can the following be the Cayley graph of M/ρ for any congruence ρ on *M*?

<ロ> (四) (四) (日) (日) (日)

Let *M* be presented by $\langle a, b | ba = a^2 b \rangle$. Can the following be the Cayley graph of M/ρ for any congruence ρ on *M*?

<ロ> (四) (四) (日) (日) (日)

E

No!

Let M be a finitely presented monoid. In (Anagnostopoulou-Merkouri et al. 2024) we give conditions for determining if a (possibly incomplete) word graph can be extended to one that

- corresponds to a two-sided congruence on *M*,
- corresponds to a right/left congruence on *M*,
- corresponds to a Rees congruence¹ on *M*,
- corresponds to a group congruence on M,
- defines a faithful action² on M.

We also give a backtrack search framework for efficiently iterating over all such word graphs up to a given number of vertices. Our backtrack method avoids double counting. Our approach can be seen as a generalization of the Sims low index subgroup algorithm for groups (Sims 1994).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

¹Provided the word problem in M is decidable.

²This only makes sense when M is finite.

- Counting finite index (left, right, two-sided) congruences of a f.p. monoid or semigroup.
- Counting finite index (left, right, two-sided) ideals of a f.p. monoid or semigroup with decidable word problem.
- Improving non-isomorphism and non-triviality testing.
- A more efficient implementation of McKinsey's algorithm for solving the word problem in residually finite monoids.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

• Finding small transformation representations of finite monoids.

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For more details see:

Marina Anagnostopoulou-Merkouri, R. C, James D. Mitchell, and Maria Tsalakou (2024). Computing finite index congruences of finitely presented semigroups and monoids. arXiv: 2302.06295 [math.RA] Semigroups package for GAP system: semigroups.github.io/Semigroups libsemigroups C++ library: libsemigroups.github.io Anagnostopoulou-Merkouri, Marina, R. C, James D. Mitchell, and Maria Tsalakou (2024). Computing finite index congruences of finitely presented semigroups and monoids. arXiv: 2302.06295 [math.RA].

Markov, A. A. (1947). "On the impossibility of certain algorithms in the theory of associative systems". In: *Doklady Akad. Nauk SSSR (N.S.)* 55, pp. 583–586.

(1951). "The impossibility of certain algorithms in the theory of associative systems". Russian. In: *Dokl. Akad. Nauk SSSR, n. Ser.* 77, pp. 19–20. ISSN: 0002-3264.

Post, Emil L. (1947). "Recursive unsolvability of a problem of Thue". In: J. Symbolic Logic 12, pp. 1–11. ISSN: 0022-4812. DOI: 10.2307/2267170. URL: https://doi-org.uea.idm.oclc.org/10.2307/2267170.

Sims, Charles C. (1994). *Computation with Finitely Presented Groups*. Encyclopedia of Mathematics and its Applications. Cambridge University Press. DOI: 10.1017/CB09780511574702.

(日) (四) (王) (王) (王)