Maximal One-sided Congruences of Full Transformation Monoids

Reinis Cirpons

Joint work with

James Mitchell

Yann Péresse

Semigroups

Semigroups

Groups

Semigroups

Subsemigroups

Groups

Subgroups

Semigroups

Subsemigroups

► Two-sided congruences

$$(x,y) \in \rho \Rightarrow (sxt, syt) \in \rho$$

Groups

Subgroups

Normal subgroups

Semigroups

Subsemigroups

► Two-sided congruences

$$(x,y) \in \rho \Rightarrow (sxt, syt) \in \rho$$

Groups

- Subgroups
 - subobjects
 - right action on cosets

$$Hx \cdot y = H(xy)$$

- left action on cosets
- Normal subgroups

Semigroups

- Subsemigroups
- Right congruences

$$(x,y) \in \rho \Rightarrow (xs,ys) \in \rho$$

- Left congruences
- ► Two-sided congruences

$$(x,y) \in \rho \Rightarrow (sxt, syt) \in \rho$$

Groups

- Subgroups
 - subobjects
 - right action on cosets

$$Hx \cdot y = H(xy)$$

- left action on cosets
- Normal subgroups

Normal subgroups of S_n

Theorem

The normal subgroup lattices of S_n for $n \in \mathbb{N}$ are precisely as follows:

Two-sided congruences of \mathcal{T}_n

Theorem (Mal'cev 1952)

Let $n \geq 2$. Then there is a bijection between non-total two-sided congruences of \mathcal{T}_n and normal subgroups of \mathcal{S}_k for all $k \in \{1, \dots, n\}$.

Two-sided congruences of \mathcal{T}_n

Theorem (Mal'cev 1952)

Let $n \geq 2$. Then there is a bijection between non-total two-sided congruences of \mathcal{T}_n and normal subgroups of \mathcal{S}_k for all $k \in \{1, \ldots, n\}$. In particular the two-sided congruence lattice of \mathcal{T}_n is a chain of height 3n-1 when n > 4.

```
\nabla_{\mathcal{T}_n}
   \rho_{S_n}
  \rho_{A_n}
    \rho_{I_n}
\rho_{S_{n-1}}
   \rho_{S_2}
    \rho_{l_2}
   \rho_{S_1}
```

Similar ideas used to describe the two-sided congruence lattices of:

- Other transformation monoids
 - Partial transformation monoid (Šutov 1988),
 - Symmetric inverse monoid (Scheiblich 1973),
- Diagram monoids
 - ► The full partition monoid, Brauer monoid, Jones monoid etc. (East, Mitchell, Ruškuc, and Torpey 2018),
 - Twisted partition monoids (East and Ruškuc 2022),
- Endomorphism monoids of ordered sets
 - The monoid of all injective order preserving partial transformations on a finite chain (Fernandes 2001),
 - monoids of order-preserving or order-reversing transformations on a finite chain (Fernandes, Gomes, and Jesus 2005).

Right congruences of \mathcal{T}_n

Question

Does there exist a description of the right congruence lattice of \mathcal{T}_n à la Mal'cev?

Figure: Right cong. lattice of \mathcal{T}_2

Figure: Right cong. lattice of \mathcal{T}_2 Figure: Right cong. lattice of \mathcal{T}_3

n	$ \mathcal{T}_n $	two-sided	right	left
1	1	1	1	1
2	4	4	7	4
3	27	7	287	180
4	256	11	22'069'828	120'121
5	3125	14	?	?
n	n ⁿ	$3n-1, n \geq 4$?	?

Table: Number of congruences of \mathcal{T}_n

Right congruences of \mathcal{T}_n

Question

Does there exist a description of the right congruence lattice of \mathcal{T}_n à la Mal'cev?

Question

Is there anything at all we can say about the right congruence lattice of \mathcal{T}_n ?

Right congruences of \mathcal{T}_n

Question

Does there exist a description of the right congruence lattice of \mathcal{T}_n à la Mal'cev?

Question

Is there anything at all we can say about the right congruence lattice of \mathcal{T}_n ?

Brookes, East, Miller, Mitchell, and Ruškuc 2024 give a formula for the height of the right and left congruence lattices of \mathcal{T}_n .

Maximal right congruences of \mathcal{T}_n

A right congruence ρ of a monoid M is maximal if

- 1. $\rho \neq \nabla_M$ and
- 2. $\rho \subseteq \sigma \subseteq \nabla_M \Rightarrow \sigma = \rho \text{ or } \sigma = \nabla_M$.

Maximal right congruences of \mathcal{T}_n

A right congruence ρ of a monoid M is maximal if

- 1. $\rho \neq \nabla_M$ and
- 2. $\rho \subseteq \sigma \subseteq \nabla_M \Rightarrow \sigma = \rho \text{ or } \sigma = \nabla_M$.

Computational results

n	$ \mathcal{T}_n $	right	maximal right	left	maximal left
1	1	1	0	1	0
2	4	7	3	4	1
3	27	287	7	180	4
4	256	22'069'828	15	120'121	14
5	3125	?	≥ 31	?	≥ 51
n	n ⁿ	?		?	

Table: Number of congruences of \mathcal{T}_n

Computational results

n	$ \mathcal{T}_n $	right	maximal right	left	maximal left
1	1	1	0	1	0
2	4	7	3	4	1
3	27	287	7	180	4
4	256	22'069'828	15	120'121	14
5	3125	?	≥ 31	?	≥ 51
n	n ⁿ	?	$2^{n}-1$?	?	

Table: Number of congruences of \mathcal{T}_n

M. Anagnostopoulou-Merkouri, R. C., J. D. Mitchell, and M. Tsalakou (2024). *Computing finite index congruences of finitely presented semigroups and monoids.* arXiv: 2302.06295 [math.RA]. URL: https://arxiv.org/abs/2302.06295

Code for computing maximal congruences implemented in

libsemigroups_pybind11

The right syntactic congruence

Let S be a semigroup and let $Z \subseteq S$. Define the *right syntactic congruence* induced by Z to be

$$\sim_Z = \{ (x, y) \in S \times S \mid \forall s \in S, xs \in Z \Leftrightarrow ys \in Z \}$$

The right syntactic congruence

Let S be a semigroup and let $Z \subseteq S$. Define the *right syntactic congruence* induced by Z to be

$$\sim_Z = \{ (x, y) \in S \times S \mid \forall s \in S, \ xs \in Z \Leftrightarrow ys \in Z \}$$

Lemma

Let ρ be a right congruence on M, let $z \in S$ and let

$$Z = z/\rho = \{ w \in S \mid (z, w) \in \rho \}$$

. Then $\rho \subseteq \sim_{\mathbb{Z}}$.

The right syntactic congruence

Let S be a semigroup and let $Z \subseteq S$. Define the *right syntactic congruence* induced by Z to be

$$\sim_{Z} = \{ (x, y) \in S \times S \mid \forall s \in S, \ xs \in Z \Leftrightarrow ys \in Z \}$$

Lemma

Let ρ be a right congruence on M, let $z \in S$ and let

$$Z = z/\rho = \{ w \in S \mid (z, w) \in \rho \}$$

. Then $\rho \subseteq \sim_{\mathbb{Z}}$.

Corollary

If S is a monoid and ρ is maximal, then $\rho = \sim_Z$ for some $Z = z/\rho$.

Maximal right congruences of monoids

Let M be a monoid and let ρ be a right congruence on M. Then $1/\rho$ is a submonoid of M. Furthermore $1/\rho$ is a left division closed (LDC) submonoid of M, that is for all $x,y\in M$:

$$x \in 1/\rho$$
 and $xy \in 1/\rho \Rightarrow y \in 1/\rho$

Maximal right congruences of monoids

Let M be a monoid and let ρ be a right congruence on M. Then $1/\rho$ is a submonoid of M. Furthermore $1/\rho$ is a left division closed (LDC) submonoid of M, that is for all $x,y\in M$:

$$x \in 1/\rho$$
 and $xy \in 1/\rho \Rightarrow y \in 1/\rho$

Lemma

Every LDC submonoid N of M arises as $1/\rho$ for some right congruence ρ .

Maximal right congruences of monoids

Let M be a monoid and let ρ be a right congruence on M. Then $1/\rho$ is a submonoid of M. Furthermore $1/\rho$ is a left division closed (LDC) submonoid of M, that is for all $x, y \in M$:

$$x \in 1/\rho$$
 and $xy \in 1/\rho \Rightarrow y \in 1/\rho$

Lemma

Every LDC submonoid N of M arises as $1/\rho$ for some right congruence ρ .

Lemma

If N is a maximal LDC submonoid of M, then \sim_N is a maximal right congruence.

LDC submonoids of \mathcal{T}_{Ω}

Let Ω be a set. We write $\mathcal{T}_{\Omega} = \{f : \Omega \to \Omega \text{ a function}\}.$ Let $\Sigma \subseteq \Omega$ be non-empty. The *setwise stabilizer* of Σ in \mathcal{T}_{Ω} is the submonoid

$$\mathsf{Stab}(\Sigma) = \{ f \in \mathcal{T}_{\Omega} \, | \, (\Sigma)f = \Sigma \, \} \, .$$

LDC submonoids of \mathcal{T}_{Ω}

Let Ω be a set. We write $\mathcal{T}_{\Omega} = \{f : \Omega \to \Omega \text{ a function}\}.$ Let $\Sigma \subseteq \Omega$ be non-empty. The setwise stabilizer of Σ in \mathcal{T}_{Ω} is the submonoid

$$\mathsf{Stab}(\Sigma) = \{ f \in \mathcal{T}_{\Omega} \mid (\Sigma)f = \Sigma \}.$$

Lemma

 $\mathsf{Stab}(\Sigma)$ is an LDC submonoid. When $|\Sigma| < \infty$, $\mathsf{Stab}(\Sigma)$ is also a maximal LDC submonoid.

LDC submonoids of \mathcal{T}_{Ω}

Let Ω be a set. We write $\mathcal{T}_{\Omega} = \{f : \Omega \to \Omega \text{ a function}\}.$ Let $\Sigma \subseteq \Omega$ be non-empty. The setwise stabilizer of Σ in \mathcal{T}_{Ω} is the submonoid

$$\mathsf{Stab}(\Sigma) = \{ f \in \mathcal{T}_{\Omega} \mid (\Sigma)f = \Sigma \}.$$

Lemma

 $\mathsf{Stab}(\Sigma)$ is an LDC submonoid. When $|\Sigma| < \infty$, $\mathsf{Stab}(\Sigma)$ is also a maximal LDC submonoid.

Theorem (C., Mitchell, and Péresse 2025+)

Let Ω be a finite set, then every maximal right congruence of \mathcal{T}_{Ω} is of the form $\sim_{\mathsf{Stab}(\Sigma)}$ for some non-empty set $\Sigma \subseteq \Omega$. Hence \mathcal{T}_{Ω} has precisely $2^{|\Omega|}-1$ maximal right congruences.

Left congruences of \mathcal{T}_{Ω}

Theorem (C., Mitchell, and Péresse 2025+)

Let Ω be a finite set. Then \mathcal{T}_{Ω} has precisely $B(|\Omega|)-1$ maximal left congruences.

The case when $|\Omega| = \infty$

Theorem (C., Mitchell, and Péresse 2025+)

Let Ω be an infinite set. Then \mathcal{T}_{Ω} has precisely $2^{2^{|\Omega|}}$ maximal right congruences.

The case when $|\Omega| = \infty$

Theorem (C., Mitchell, and Péresse 2025+)

Let Ω be an infinite set. Then \mathcal{T}_{Ω} has precisely $2^{2^{|\Omega|}}$ maximal right congruences.

Lemma

Let N be an LDC submonoid of \mathcal{T}_{Ω} . Then the set $\{(\Omega)f : f \in N\}$ is a filter on $\mathcal{P}(\Omega)$.

Lemma

Let \mathcal{F} be an ultrafilter on $\mathcal{P}(\Omega)$. Then the submonoid

$$\mathsf{End}(F) = \{ f \in \mathcal{T}_{\Omega} \mid \forall \Sigma \in \mathcal{F}, \ (\Sigma)f \in \mathcal{F} \}$$

is a maximal LDC submonoid of \mathcal{T}_{Ω} .

► Apply techniques to other transformation monoids, diagram monoids etc.

- ► Apply techniques to other transformation monoids, diagram monoids etc.
- Extend method to larger classes of one-sided congruences, e.g. meet irreducible one-sided congruences.

- Apply techniques to other transformation monoids, diagram monoids etc.
- Extend method to larger classes of one-sided congruences, e.g. meet irreducible one-sided congruences.
- ▶ What are the left congruences of \mathcal{T}_{Ω} , when $|\Omega| = \infty$?

- Apply techniques to other transformation monoids, diagram monoids etc.
- Extend method to larger classes of one-sided congruences, e.g. meet irreducible one-sided congruences.
- ▶ What are the left congruences of \mathcal{T}_{Ω} , when $|\Omega| = \infty$?
- Describe the lattice of right/left congruences modulo the lattice of LDC/RDC submonoids.

Thank you for your attention!

References I

- Anagnostopoulou-Merkouri, M. et al. (2024). Computing finite index congruences of finitely presented semigroups and monoids. arXiv: 2302.06295 [math.RA]. URL: https://arxiv.org/abs/2302.06295.
- Brookes, M. et al. (Dec. 2024). "Heights of one- and two-sided congruence lattices of semigroups". In: *Pacific Journal of Mathematics* 333.1, pp. 17–57. URL: http://dx.doi.org/10.2140/pjm.2024.333.17.
- C., R., Mitchell, J. D., and Péresse, Y. (2025+). "Maximal and minimal one sided congruences of the full transformation monoid".
- East, J., Mitchell, J. D., et al. (July 2018). "Congruence lattices of finite diagram monoids". en. In: *Adv. Math. (N. Y.)* 333, pp. 931–1003.
- East, J. and Ruškuc, N. (Feb. 2022). "Classification of congruences of twisted partition monoids". en. In: *Adv. Math.* (N. Y.) 395.108097, p. 108097.

References II

- Fernandes, V. H. (Mar. 2001). "The monoid of all injective order preserving partial transformations on a finite chain". en. In: *Agron. J.* 62.2, pp. 178–204.
- Fernandes, V. H., Gomes, G. M. S., and Jesus, M. M. (July 2005). "Congruences on monoids of order-preserving or order-reversing transformations on a finite chain". In: *Glasg. Math. J.* 47.2, pp. 413–424.
- Mal'cev, A. I. (1952). "Symmetric groupoids". Russian. In: *Mat. Sb., Nov. Ser.* 31, pp. 136–151. URL: http://mi.mathnet.ru/eng/sm5522.
- Scheiblich, H. E. (1973). "Concerning congruences on symmetric inverse semigroups". en. In: *Czechoslovak Math. J.* 23.1, pp. 1–9, 10.
- Šutov, È. G. (1988). Homomorphisms of the semigroup of all partial transformations. Providence, Rhode Island.