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Objects of study

Semigroups

▶ Subsemigroups

▶ Right congruences

(x , y) ∈ ρ ⇒ (xs, ys) ∈ ρ

▶ Left congruences

▶ Two-sided congruences

(x , y) ∈ ρ ⇒ (sxt, syt) ∈ ρ

Groups

▶ Subgroups

▶ subobjects
▶ right action on cosets

Hx · y = H(xy)

▶ left action on cosets

▶ Normal subgroups
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Normal subgroups of Sn

Theorem

The normal subgroup lattices of Sn for n ∈ N are precisely as
follows:
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Two-sided congruences of Tn

Theorem (Mal’cev 1952)

Let n ≥ 2. Then there is a
bijection between non-total
two-sided congruences of Tn and
normal subgroups of Sk for all
k ∈ {1, . . . , n}.

In particular the two-sided
congruence lattice of Tn is a
chain of height 3n − 1 when
n ≥ 4.

∇Tn

ρSn

ρAn

ρIn

ρSn−1

...

ρS2

ρI2

ρS1
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Similar ideas used to describe the two-sided congruence lattices of:
▶ Other transformation monoids

▶ Partial transformation monoid (Šutov 1988),
▶ Symmetric inverse monoid (Scheiblich 1973),

▶ Diagram monoids
▶ The full partition monoid, Brauer monoid, Jones monoid etc.

(East, Mitchell, Ruškuc, and Torpey 2018),
▶ Twisted partition monoids (East and Ruškuc 2022),

▶ Endomorphism monoids of ordered sets
▶ The monoid of all injective order preserving partial

transformations on a finite chain (Fernandes 2001),
▶ monoids of order-preserving or order-reversing transformations

on a finite chain (Fernandes, Gomes, and Jesus 2005).



Right congruences of Tn

Question

Does there exist a description of the right congruence lattice of Tn
à la Mal’cev?



Figure: Right cong. lattice of T2

Figure: Right cong. lattice of T3



Figure: Right cong. lattice of T2 Figure: Right cong. lattice of T3



n |Tn| two-sided right left

1 1 1 1 1
2 4 4 7 4
3 27 7 287 180
4 256 11 22’069’828 120’121
5 3125 14 ? ?

n nn 3n − 1, n ≥ 4 ? ?

Table: Number of congruences of Tn
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Is there anything at all we can say about the right congruence
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Brookes, East, Miller, Mitchell, and Ruškuc 2024 give a formula for
the height of the right and left congruence lattices of Tn.
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Maximal right congruences of Tn

A right congruence ρ of a monoid M is
maximal if

1. ρ ̸= ∇M and

2. ρ ⊆ σ ⊆ ∇M ⇒ σ = ρ or σ = ∇M .
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Computational results

n |Tn| right maximal right left maximal left

1 1 1 0 1 0
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3 27 287 7 180 4
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M. Anagnostopoulou-Merkouri, R. C., J. D. Mitchell, and
M. Tsalakou (2024). Computing finite index congruences of
finitely presented semigroups and monoids. arXiv: 2302.06295
[math.RA]. url: https://arxiv.org/abs/2302.06295

Code for computing maximal congruences implemented in

libsemigroups_pybind11libsemigroups_pybind11

https://arxiv.org/abs/2302.06295
https://arxiv.org/abs/2302.06295
https://arxiv.org/abs/2302.06295


The right syntactic congruence

Let S be a semigroup and let Z ⊆ S . Define the right syntactic
congruence induced by Z to be

∼Z= { (x , y) ∈ S × S | ∀s ∈ S , xs ∈ Z ⇔ ys ∈ Z }

Lemma

Let ρ be a right congruence on M, let z ∈ S and let

Z = z/ρ = { w ∈ S | (z ,w) ∈ ρ }

. Then ρ ⊆∼Z .

Corollary

If S is a monoid and ρ is maximal, then ρ =∼Z for some Z = z/ρ.
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Maximal right congruences of monoids

Let M be a monoid and let ρ be a right congruence on M. Then
1/ρ is a submonoid of M. Furthermore 1/ρ is a left division closed
(LDC) submonoid of M, that is for all x , y ∈ M:

x ∈ 1/ρ and xy ∈ 1/ρ ⇒ y ∈ 1/ρ

Lemma

Every LDC submonoid N of M arises as 1/ρ for some right
congruence ρ.

Lemma

If N is a maximal LDC submonoid of M, then ∼N is a maximal
right congruence.
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LDC submonoids of TΩ

Let Ω be a set. We write TΩ = {f : Ω → Ω a function}.
Let Σ ⊆ Ω be non-empty. The setwise stabilizer of Σ in TΩ is the
submonoid

Stab(Σ) = { f ∈ TΩ | (Σ)f = Σ } .

Lemma

Stab(Σ) is an LDC submonoid. When |Σ| < ∞, Stab(Σ) is also a
maximal LDC submonoid.

Theorem (C., Mitchell, and Péresse 2025+)

Let Ω be a finite set, then every maximal right congruence of TΩ is
of the form ∼Stab(Σ) for some non-empty set Σ ⊆ Ω. Hence TΩ
has precisely 2|Ω| − 1 maximal right congruences.
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Left congruences of TΩ

Theorem (C., Mitchell, and Péresse 2025+)

Let Ω be a finite set. Then TΩ has precisely B(|Ω|)− 1 maximal
left congruences.



The case when |Ω| = ∞

Theorem (C., Mitchell, and Péresse 2025+)

Let Ω be an infinite set. Then TΩ has precisely 22
|Ω|

maximal right
congruences.

Lemma

Let N be an LDC submonoid of TΩ. Then the set {(Ω)f : f ∈ N}
is a filter on P(Ω).

Lemma

Let F be an ultrafilter on P(Ω). Then the submonoid

End(F ) = { f ∈ TΩ | ∀Σ ∈ F , (Σ)f ∈ F }

is a maximal LDC submonoid of TΩ.
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Future work

▶ Apply techniques to other transformation monoids, diagram
monoids etc.

▶ Extend method to larger classes of one-sided congruences, e.g.
meet irreducible one-sided congruences.

▶ What are the left congruences of TΩ, when |Ω| = ∞?

▶ Describe the lattice of right/left congruences modulo the
lattice of LDC/RDC submonoids.
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Thank you for your attention!
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